Struct rust_pathtracer::prelude::SymmetricEigen
source · pub struct SymmetricEigen<T, D>where
T: ComplexField,
D: Dim,
DefaultAllocator: Allocator<T, D, D> + Allocator<<T as ComplexField>::RealField, D, Const<1>>,{
pub eigenvectors: Matrix<T, D, D, <DefaultAllocator as Allocator<T, D, D>>::Buffer>,
pub eigenvalues: Matrix<<T as ComplexField>::RealField, D, Const<1>, <DefaultAllocator as Allocator<<T as ComplexField>::RealField, D, Const<1>>>::Buffer>,
}Expand description
Eigendecomposition of a symmetric matrix.
Fields§
§eigenvectors: Matrix<T, D, D, <DefaultAllocator as Allocator<T, D, D>>::Buffer>The eigenvectors of the decomposed matrix.
eigenvalues: Matrix<<T as ComplexField>::RealField, D, Const<1>, <DefaultAllocator as Allocator<<T as ComplexField>::RealField, D, Const<1>>>::Buffer>The unsorted eigenvalues of the decomposed matrix.
Implementations§
source§impl<T, D> SymmetricEigen<T, D>where
T: ComplexField,
D: Dim,
DefaultAllocator: Allocator<T, D, D> + Allocator<<T as ComplexField>::RealField, D, Const<1>>,
impl<T, D> SymmetricEigen<T, D>where T: ComplexField, D: Dim, DefaultAllocator: Allocator<T, D, D> + Allocator<<T as ComplexField>::RealField, D, Const<1>>,
sourcepub fn new(
m: Matrix<T, D, D, <DefaultAllocator as Allocator<T, D, D>>::Buffer>
) -> SymmetricEigen<T, D>where
D: DimSub<Const<1>>,
DefaultAllocator: Allocator<T, <D as DimSub<Const<1>>>::Output, Const<1>> + Allocator<<T as ComplexField>::RealField, <D as DimSub<Const<1>>>::Output, Const<1>>,
pub fn new( m: Matrix<T, D, D, <DefaultAllocator as Allocator<T, D, D>>::Buffer> ) -> SymmetricEigen<T, D>where D: DimSub<Const<1>>, DefaultAllocator: Allocator<T, <D as DimSub<Const<1>>>::Output, Const<1>> + Allocator<<T as ComplexField>::RealField, <D as DimSub<Const<1>>>::Output, Const<1>>,
Computes the eigendecomposition of the given symmetric matrix.
Only the lower-triangular parts (including its diagonal) of m is read.
sourcepub fn try_new(
m: Matrix<T, D, D, <DefaultAllocator as Allocator<T, D, D>>::Buffer>,
eps: <T as ComplexField>::RealField,
max_niter: usize
) -> Option<SymmetricEigen<T, D>>where
D: DimSub<Const<1>>,
DefaultAllocator: Allocator<T, <D as DimSub<Const<1>>>::Output, Const<1>> + Allocator<<T as ComplexField>::RealField, <D as DimSub<Const<1>>>::Output, Const<1>>,
pub fn try_new( m: Matrix<T, D, D, <DefaultAllocator as Allocator<T, D, D>>::Buffer>, eps: <T as ComplexField>::RealField, max_niter: usize ) -> Option<SymmetricEigen<T, D>>where D: DimSub<Const<1>>, DefaultAllocator: Allocator<T, <D as DimSub<Const<1>>>::Output, Const<1>> + Allocator<<T as ComplexField>::RealField, <D as DimSub<Const<1>>>::Output, Const<1>>,
Computes the eigendecomposition of the given symmetric matrix with user-specified convergence parameters.
Only the lower-triangular part (including its diagonal) of m is read.
Arguments
eps− tolerance used to determine when a value converged to 0.max_niter− maximum total number of iterations performed by the algorithm. If this number of iteration is exceeded,Noneis returned. Ifniter == 0, then the algorithm continues indefinitely until convergence.
Trait Implementations§
source§impl<T, D> Clone for SymmetricEigen<T, D>where
T: Clone + ComplexField,
D: Clone + Dim,
DefaultAllocator: Allocator<T, D, D> + Allocator<<T as ComplexField>::RealField, D, Const<1>>,
<T as ComplexField>::RealField: Clone,
impl<T, D> Clone for SymmetricEigen<T, D>where T: Clone + ComplexField, D: Clone + Dim, DefaultAllocator: Allocator<T, D, D> + Allocator<<T as ComplexField>::RealField, D, Const<1>>, <T as ComplexField>::RealField: Clone,
source§fn clone(&self) -> SymmetricEigen<T, D>
fn clone(&self) -> SymmetricEigen<T, D>
Returns a copy of the value. Read more
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moresource§impl<T, D> Debug for SymmetricEigen<T, D>where
T: Debug + ComplexField,
D: Debug + Dim,
DefaultAllocator: Allocator<T, D, D> + Allocator<<T as ComplexField>::RealField, D, Const<1>>,
<T as ComplexField>::RealField: Debug,
impl<T, D> Debug for SymmetricEigen<T, D>where T: Debug + ComplexField, D: Debug + Dim, DefaultAllocator: Allocator<T, D, D> + Allocator<<T as ComplexField>::RealField, D, Const<1>>, <T as ComplexField>::RealField: Debug,
impl<T, D> Copy for SymmetricEigen<T, D>where T: ComplexField, D: Dim, DefaultAllocator: Allocator<T, D, D> + Allocator<<T as ComplexField>::RealField, D, Const<1>>, Matrix<T, D, D, <DefaultAllocator as Allocator<T, D, D>>::Buffer>: Copy, Matrix<<T as ComplexField>::RealField, D, Const<1>, <DefaultAllocator as Allocator<<T as ComplexField>::RealField, D, Const<1>>>::Buffer>: Copy,
Auto Trait Implementations§
impl<T, D> !RefUnwindSafe for SymmetricEigen<T, D>
impl<T, D> !Send for SymmetricEigen<T, D>
impl<T, D> !Sync for SymmetricEigen<T, D>
impl<T, D> !Unpin for SymmetricEigen<T, D>
impl<T, D> !UnwindSafe for SymmetricEigen<T, D>
Blanket Implementations§
§impl<T> Pointable for T
impl<T> Pointable for T
§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.