Struct rust_pathtracer::prelude::Schur
source · pub struct Schur<T, D>where
T: ComplexField,
D: Dim,
DefaultAllocator: Allocator<T, D, D>,{ /* private fields */ }Expand description
Schur decomposition of a square matrix.
If this is a real matrix, this will be a RealField Schur decomposition.
Implementations§
source§impl<T, D> Schur<T, D>where
T: ComplexField,
D: Dim + DimSub<Const<1>>,
DefaultAllocator: Allocator<T, D, <D as DimSub<Const<1>>>::Output> + Allocator<T, <D as DimSub<Const<1>>>::Output, Const<1>> + Allocator<T, D, D> + Allocator<T, D, Const<1>>,
impl<T, D> Schur<T, D>where T: ComplexField, D: Dim + DimSub<Const<1>>, DefaultAllocator: Allocator<T, D, <D as DimSub<Const<1>>>::Output> + Allocator<T, <D as DimSub<Const<1>>>::Output, Const<1>> + Allocator<T, D, D> + Allocator<T, D, Const<1>>,
sourcepub fn new(
m: Matrix<T, D, D, <DefaultAllocator as Allocator<T, D, D>>::Buffer>
) -> Schur<T, D>
pub fn new( m: Matrix<T, D, D, <DefaultAllocator as Allocator<T, D, D>>::Buffer> ) -> Schur<T, D>
Computes the Schur decomposition of a square matrix.
sourcepub fn try_new(
m: Matrix<T, D, D, <DefaultAllocator as Allocator<T, D, D>>::Buffer>,
eps: <T as ComplexField>::RealField,
max_niter: usize
) -> Option<Schur<T, D>>
pub fn try_new( m: Matrix<T, D, D, <DefaultAllocator as Allocator<T, D, D>>::Buffer>, eps: <T as ComplexField>::RealField, max_niter: usize ) -> Option<Schur<T, D>>
Attempts to compute the Schur decomposition of a square matrix.
If only eigenvalues are needed, it is more efficient to call the matrix method
.eigenvalues() instead.
Arguments
eps− tolerance used to determine when a value converged to 0.max_niter− maximum total number of iterations performed by the algorithm. If this number of iteration is exceeded,Noneis returned. Ifniter == 0, then the algorithm continues indefinitely until convergence.
sourcepub fn unpack(
self
) -> (Matrix<T, D, D, <DefaultAllocator as Allocator<T, D, D>>::Buffer>, Matrix<T, D, D, <DefaultAllocator as Allocator<T, D, D>>::Buffer>)
pub fn unpack( self ) -> (Matrix<T, D, D, <DefaultAllocator as Allocator<T, D, D>>::Buffer>, Matrix<T, D, D, <DefaultAllocator as Allocator<T, D, D>>::Buffer>)
Retrieves the unitary matrix Q and the upper-quasitriangular matrix T such that the
decomposed matrix equals Q * T * Q.transpose().
sourcepub fn eigenvalues(
&self
) -> Option<Matrix<T, D, Const<1>, <DefaultAllocator as Allocator<T, D, Const<1>>>::Buffer>>
pub fn eigenvalues( &self ) -> Option<Matrix<T, D, Const<1>, <DefaultAllocator as Allocator<T, D, Const<1>>>::Buffer>>
Computes the real eigenvalues of the decomposed matrix.
Return None if some eigenvalues are complex.
sourcepub fn complex_eigenvalues(
&self
) -> Matrix<Complex<T>, D, Const<1>, <DefaultAllocator as Allocator<Complex<T>, D, Const<1>>>::Buffer>where
T: RealField,
DefaultAllocator: Allocator<Complex<T>, D, Const<1>>,
pub fn complex_eigenvalues( &self ) -> Matrix<Complex<T>, D, Const<1>, <DefaultAllocator as Allocator<Complex<T>, D, Const<1>>>::Buffer>where T: RealField, DefaultAllocator: Allocator<Complex<T>, D, Const<1>>,
Computes the complex eigenvalues of the decomposed matrix.
Trait Implementations§
source§impl<T, D> Clone for Schur<T, D>where
T: Clone + ComplexField,
D: Clone + Dim,
DefaultAllocator: Allocator<T, D, D>,
impl<T, D> Clone for Schur<T, D>where T: Clone + ComplexField, D: Clone + Dim, DefaultAllocator: Allocator<T, D, D>,
source§impl<T, D> Debug for Schur<T, D>where
T: Debug + ComplexField,
D: Debug + Dim,
DefaultAllocator: Allocator<T, D, D>,
impl<T, D> Debug for Schur<T, D>where T: Debug + ComplexField, D: Debug + Dim, DefaultAllocator: Allocator<T, D, D>,
impl<T, D> Copy for Schur<T, D>where T: ComplexField, D: Dim, DefaultAllocator: Allocator<T, D, D>, Matrix<T, D, D, <DefaultAllocator as Allocator<T, D, D>>::Buffer>: Copy,
Auto Trait Implementations§
impl<T, D> !RefUnwindSafe for Schur<T, D>
impl<T, D> !Send for Schur<T, D>
impl<T, D> !Sync for Schur<T, D>
impl<T, D> !Unpin for Schur<T, D>
impl<T, D> !UnwindSafe for Schur<T, D>
Blanket Implementations§
§impl<T> Pointable for T
impl<T> Pointable for T
§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.