pub struct TokenClassificationConfig {
pub model_type: ModelType,
pub model_resource: ModelResource,
pub config_resource: Box<dyn ResourceProvider + Send>,
pub vocab_resource: Box<dyn ResourceProvider + Send>,
pub merges_resource: Option<Box<dyn ResourceProvider + Send>>,
pub lower_case: bool,
pub strip_accents: Option<bool>,
pub add_prefix_space: Option<bool>,
pub device: Device,
pub kind: Option<Kind>,
pub label_aggregation_function: LabelAggregationOption,
pub batch_size: usize,
}Expand description
§Configuration for TokenClassificationModel
Contains information regarding the model to load and device to place the model on.
Fields§
§model_type: ModelTypeModel type
model_resource: ModelResourceModel weights resource (default: pretrained BERT model on CoNLL)
config_resource: Box<dyn ResourceProvider + Send>Config resource (default: pretrained BERT model on CoNLL)
vocab_resource: Box<dyn ResourceProvider + Send>Vocab resource (default: pretrained BERT model on CoNLL)
merges_resource: Option<Box<dyn ResourceProvider + Send>>Merges resource (default: pretrained BERT model on CoNLL)
lower_case: boolAutomatically lower case all input upon tokenization (assumes a lower-cased model)
strip_accents: Option<bool>Flag indicating if the tokenizer should strip accents (normalization). Only used for BERT / ALBERT models
add_prefix_space: Option<bool>Flag indicating if the tokenizer should add a white space before each tokenized input (needed for some Roberta models)
device: DeviceDevice to place the model on (default: CUDA/GPU when available)
kind: Option<Kind>Model weights precision. If not provided, will default to full precision on CPU, or the loaded weights precision otherwise
label_aggregation_function: LabelAggregationOptionSub-tokens aggregation method (default: LabelAggregationOption::First)
batch_size: usizeBatch size for predictions
Implementations§
Source§impl TokenClassificationConfig
impl TokenClassificationConfig
Sourcepub fn new<RC, RV>(
model_type: ModelType,
model_resource: ModelResource,
config_resource: RC,
vocab_resource: RV,
merges_resource: Option<RV>,
lower_case: bool,
strip_accents: impl Into<Option<bool>>,
add_prefix_space: impl Into<Option<bool>>,
label_aggregation_function: LabelAggregationOption,
) -> TokenClassificationConfig
pub fn new<RC, RV>( model_type: ModelType, model_resource: ModelResource, config_resource: RC, vocab_resource: RV, merges_resource: Option<RV>, lower_case: bool, strip_accents: impl Into<Option<bool>>, add_prefix_space: impl Into<Option<bool>>, label_aggregation_function: LabelAggregationOption, ) -> TokenClassificationConfig
Instantiate a new token classification configuration of the supplied type.
§Arguments
model_type-ModelTypeindicating the model type to load (must match with the actual data to be loaded!)- model - The
ResourceProviderpointing to the model to load (e.g. model.ot) - config - The
ResourceProviderpointing to the model configuration to load (e.g. config.json) - vocab - The
ResourceProviderpointing to the tokenizers’ vocabulary to load (e.g. vocab.txt/vocab.json) - vocab - An optional
ResourceProviderpointing to the tokenizers’ merge file to load (e.g. merges.txt), needed only for Roberta. - lower_case - A
boolindicating whether the tokenizer should lower case all input (in case of a lower-cased model)
Trait Implementations§
Source§impl Default for TokenClassificationConfig
impl Default for TokenClassificationConfig
Source§fn default() -> TokenClassificationConfig
fn default() -> TokenClassificationConfig
Provides a default CoNLL-2003 NER model (English)
Source§impl From<POSConfig> for TokenClassificationConfig
impl From<POSConfig> for TokenClassificationConfig
Source§impl From<TokenClassificationConfig> for POSConfig
impl From<TokenClassificationConfig> for POSConfig
Source§fn from(token_classification_config: TokenClassificationConfig) -> Self
fn from(token_classification_config: TokenClassificationConfig) -> Self
Auto Trait Implementations§
impl Freeze for TokenClassificationConfig
impl !RefUnwindSafe for TokenClassificationConfig
impl Send for TokenClassificationConfig
impl Sync for TokenClassificationConfig
impl Unpin for TokenClassificationConfig
impl !UnwindSafe for TokenClassificationConfig
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read more