pub struct LongformerModel { /* private fields */ }Expand description
§LongformerModel Base model
Base architecture for LongformerModel models. Task-specific models will be built from this common base model It is made of the following blocks:
embeddings: LongformerEmbeddings containing word, position and segment id embeddingsencoder: LongformerEncoderpooler: Optional pooling layer extracting the representation of the first token for each batch item
Implementations§
Source§impl LongformerModel
impl LongformerModel
Sourcepub fn new<'p, P>(
p: P,
config: &LongformerConfig,
add_pooling_layer: bool,
) -> LongformerModel
pub fn new<'p, P>( p: P, config: &LongformerConfig, add_pooling_layer: bool, ) -> LongformerModel
Build a new LongformerModel
§Arguments
p- Variable store path for the root of the Longformer modelconfig-LongformerConfigobject defining the model architecture
§Example
use rust_bert::longformer::{LongformerConfig, LongformerModel};
use rust_bert::Config;
use std::path::Path;
use tch::{nn, Device};
let config_path = Path::new("path/to/config.json");
let device = Device::Cpu;
let p = nn::VarStore::new(device);
let config = LongformerConfig::from_file(config_path);
let add_pooling_layer = false;
let longformer_model = LongformerModel::new(&p.root(), &config, add_pooling_layer);Sourcepub fn forward_t(
&self,
input_ids: Option<&Tensor>,
attention_mask: Option<&Tensor>,
global_attention_mask: Option<&Tensor>,
token_type_ids: Option<&Tensor>,
position_ids: Option<&Tensor>,
input_embeds: Option<&Tensor>,
train: bool,
) -> Result<LongformerModelOutput, RustBertError>
pub fn forward_t( &self, input_ids: Option<&Tensor>, attention_mask: Option<&Tensor>, global_attention_mask: Option<&Tensor>, token_type_ids: Option<&Tensor>, position_ids: Option<&Tensor>, input_embeds: Option<&Tensor>, train: bool, ) -> Result<LongformerModelOutput, RustBertError>
Forward pass through the model
§Arguments
input_ids- Optional input tensor of shape (batch size, sequence_length). This orinput_embedsmust be provided.attention_mask- Optional attention mask of shape (batch size, sequence_length). Positions with a mask with value 0 will be masked.global_attention_mask- Optional attention mask of shape (batch size, sequence_length). Positions with a mask with value 1 will attend all other positions in the sequence.token_type_ids- Optional segment id of shape (batch size, sequence_length). Convention is value of 0 for the first sentence (incl. SEP) and 1 for the second sentence. If None set to 0.position_ids- Optional position ids of shape (batch size, sequence_length). If None, will be incremented from 0.input_embeds- Optional pre-computed input embeddings of shape (batch size, sequence_length, hidden_size). If None, input ids must be provided (seeinput_ids)train- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
§Returns
LongformerModelOutputcontaining:hidden_state-Tensorof shape (batch size, sequence_length, hidden_size)pooled_output-Tensorof shape (batch size, hidden_size)all_hidden_states-Option<Vec<Tensor>>of length num_hidden_layers with shape (batch size, sequence_length, hidden_size)all_attentions-Option<Vec<Tensor>>of length num_hidden_layers with shape (batch size, num_heads, sequence_length, * attention_window_size*, x + attention_window_size + 1) where x is the number of tokens with global attentionall_global_attentions-Option<Vec<Tensor>>of length num_hidden_layers with shape (batch size, num_heads, sequence_length, attention_window_size, x) where x is the number of tokens with global attention
§Example
use rust_bert::longformer::{LongformerConfig, LongformerModel};
let longformer_model = LongformerModel::new(&vs.root(), &config, false);
let (batch_size, sequence_length, target_sequence_length) = (64, 128, 32);
let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device));
let attention_mask = Tensor::ones(&[batch_size, sequence_length], (Int64, device));
let global_attention_mask = Tensor::zeros(&[batch_size, sequence_length], (Int64, device));
let target_tensor = Tensor::ones(&[batch_size, sequence_length], (Int64, device));
let model_output = no_grad(|| {
longformer_model
.forward_t(
Some(&input_tensor),
Some(&attention_mask),
Some(&global_attention_mask),
None,
None,
None,
false,
)
.unwrap()
});Auto Trait Implementations§
impl Freeze for LongformerModel
impl RefUnwindSafe for LongformerModel
impl Send for LongformerModel
impl !Sync for LongformerModel
impl Unpin for LongformerModel
impl UnwindSafe for LongformerModel
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read more