pub struct BertModel<T: BertEmbedding> { /* private fields */ }Expand description
§BERT Base model
Base architecture for BERT models. Task-specific models will be built from this common base model It is made of the following blocks:
embeddings:token,positionandsegment_idembeddingsencoder: Encoder (transformer) made of a vector of layers. Each layer is made of a self-attention layer, an intermediate (linear) and output (linear + layer norm) layerspooler: linear layer applied to the first element of the sequence (MASK token)is_decoder: Flag indicating if the model is used as a decoder. If set to true, a causal mask will be applied to hide future positions that should not be attended to.
Implementations§
Source§impl<T: BertEmbedding> BertModel<T>
Defines the implementation of the BertModel. The BERT model shares many similarities with RoBERTa, main difference being the embeddings.
Therefore the forward pass of the model is shared and the type of embedding used is abstracted away. This allows to create
BertModel<RobertaEmbeddings> or BertModel<BertEmbeddings> for each model type.
impl<T: BertEmbedding> BertModel<T>
Defines the implementation of the BertModel. The BERT model shares many similarities with RoBERTa, main difference being the embeddings.
Therefore the forward pass of the model is shared and the type of embedding used is abstracted away. This allows to create
BertModel<RobertaEmbeddings> or BertModel<BertEmbeddings> for each model type.
Sourcepub fn new<'p, P>(p: P, config: &BertConfig) -> BertModel<T>
pub fn new<'p, P>(p: P, config: &BertConfig) -> BertModel<T>
Build a new BertModel
§Arguments
p- Variable store path for the root of the BERT modelconfig-BertConfigobject defining the model architecture and decoder status
§Example
use rust_bert::bert::{BertConfig, BertEmbeddings, BertModel};
use rust_bert::Config;
use std::path::Path;
use tch::{nn, Device};
let config_path = Path::new("path/to/config.json");
let device = Device::Cpu;
let p = nn::VarStore::new(device);
let config = BertConfig::from_file(config_path);
let bert: BertModel<BertEmbeddings> = BertModel::new(&p.root() / "bert", &config);Sourcepub fn new_with_optional_pooler<'p, P>(
p: P,
config: &BertConfig,
add_pooling_layer: bool,
) -> BertModel<T>
pub fn new_with_optional_pooler<'p, P>( p: P, config: &BertConfig, add_pooling_layer: bool, ) -> BertModel<T>
Build a new BertModel with an optional Pooling layer
§Arguments
p- Variable store path for the root of the BERT modelconfig-BertConfigobject defining the model architecture and decoder statusadd_pooling_layer- Enable/Disable an optional pooling layer at the end of the model
§Example
use rust_bert::bert::{BertConfig, BertEmbeddings, BertModel};
use rust_bert::Config;
use std::path::Path;
use tch::{nn, Device};
let config_path = Path::new("path/to/config.json");
let device = Device::Cpu;
let p = nn::VarStore::new(device);
let config = BertConfig::from_file(config_path);
let bert: BertModel<BertEmbeddings> =
BertModel::new_with_optional_pooler(&p.root() / "bert", &config, false);Sourcepub fn forward_t(
&self,
input_ids: Option<&Tensor>,
mask: Option<&Tensor>,
token_type_ids: Option<&Tensor>,
position_ids: Option<&Tensor>,
input_embeds: Option<&Tensor>,
encoder_hidden_states: Option<&Tensor>,
encoder_mask: Option<&Tensor>,
train: bool,
) -> Result<BertModelOutput, RustBertError>
pub fn forward_t( &self, input_ids: Option<&Tensor>, mask: Option<&Tensor>, token_type_ids: Option<&Tensor>, position_ids: Option<&Tensor>, input_embeds: Option<&Tensor>, encoder_hidden_states: Option<&Tensor>, encoder_mask: Option<&Tensor>, train: bool, ) -> Result<BertModelOutput, RustBertError>
Forward pass through the model
§Arguments
input_ids- Optional input tensor of shape (batch size, sequence_length). If None, pre-computed embeddings must be provided (seeinput_embeds)mask- Optional mask of shape (batch size, sequence_length). Masked position have value 0, non-masked value 1. If None set to 1token_type_ids- Optional segment id of shape (batch size, sequence_length). Convention is value of 0 for the first sentence (incl. SEP) and 1 for the second sentence. If None set to 0.position_ids- Optional position ids of shape (batch size, sequence_length). If None, will be incremented from 0.input_embeds- Optional pre-computed input embeddings of shape (batch size, sequence_length, hidden_size). If None, input ids must be provided (seeinput_ids)encoder_hidden_states- Optional encoder hidden state of shape (batch size, encoder_sequence_length, hidden_size). If the model is defined as a decoder and theencoder_hidden_statesis not None, used in the cross-attention layer as keys and values (query from the decoder).encoder_mask- Optional encoder attention mask of shape (batch size, encoder_sequence_length). If the model is defined as a decoder and theencoder_hidden_statesis not None, used to mask encoder values. Positions with value 0 will be masked.train- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
§Returns
BertOutputcontaining:hidden_state-Tensorof shape (batch size, sequence_length, hidden_size)pooled_output-Tensorof shape (batch size, hidden_size)all_hidden_states-Option<Vec<Tensor>>of length num_hidden_layers with shape (batch size, sequence_length, hidden_size)all_attentions-Option<Vec<Tensor>>of length num_hidden_layers with shape (batch size, sequence_length, hidden_size)
§Example
let (batch_size, sequence_length) = (64, 128);
let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Kind::Int64, device));
let mask = Tensor::zeros(&[batch_size, sequence_length], (Kind::Int64, device));
let token_type_ids = Tensor::zeros(&[batch_size, sequence_length], (Kind::Int64, device));
let position_ids = Tensor::arange(sequence_length, (Kind::Int64, device))
.expand(&[batch_size, sequence_length], true);
let model_output = no_grad(|| {
bert_model
.forward_t(
Some(&input_tensor),
Some(&mask),
Some(&token_type_ids),
Some(&position_ids),
None,
None,
None,
false,
)
.unwrap()
});Auto Trait Implementations§
impl<T> Freeze for BertModel<T>where
T: Freeze,
impl<T> RefUnwindSafe for BertModel<T>where
T: RefUnwindSafe,
impl<T> Send for BertModel<T>where
T: Send,
impl<T> !Sync for BertModel<T>
impl<T> Unpin for BertModel<T>where
T: Unpin,
impl<T> UnwindSafe for BertModel<T>where
T: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read more