[−][src]Struct rust_bert::t5::T5Model
T5 Base model
Base architecture for T5 model. Usually complemented with a task-specific head, such as a language model head. It is made of the following blocks:
encoder
:T5Stack
(transformer) made of a vector of encoding layersdecoder
:T5Stack
(transformer) made of a vector of decoding layers with self attention and encoder cross-attention. caching is implemented for the decoder to avoid recalculating static states (encoder key/values and previously calculated decoder key/values)embeddings
:nn::Embedding
Shared embeddings for the encoder and decoder.
Implementations
impl T5Model
[src]
pub fn new<'p, P>(
p: P,
config: &T5Config,
output_attentions: bool,
output_hidden_states: bool
) -> T5Model where
P: Borrow<Path<'p>>,
[src]
p: P,
config: &T5Config,
output_attentions: bool,
output_hidden_states: bool
) -> T5Model where
P: Borrow<Path<'p>>,
Build a new T5Model
Arguments
p
- Variable store path for the root of the BART modelconfig
-T5Config
object defining the model architectureoutput_attention
- flag indicating if the model should output the attention weights of intermediate layersoutput_hidden_states
- flag indicating if the model should output the hidden states weights of intermediate layers
Example
use rust_bert::t5::{T5Config, T5Model}; use rust_bert::Config; use std::path::Path; use tch::{nn, Device}; let config_path = Path::new("path/to/config.json"); let device = Device::Cpu; let p = nn::VarStore::new(device); let config = T5Config::from_file(config_path); let output_attentions = true; let output_hidden_states = true; let t5: T5Model = T5Model::new( &p.root() / "t5", &config, output_attentions, output_hidden_states, );
pub fn forward_t(
&self,
input_ids: Option<&Tensor>,
attention_mask: Option<&Tensor>,
encoder_outputs: Option<(Tensor, Option<Vec<Tensor>>, Option<Vec<Tensor>>)>,
decoder_input_ids: Option<&Tensor>,
decoder_attention_mask: Option<&Tensor>,
input_embeds: Option<Tensor>,
decoder_input_embeds: Option<Tensor>,
old_layer_states: Option<Vec<(Option<LayerState>, Option<LayerState>)>>,
train: bool
) -> (Tensor, Tensor, Option<Vec<(Option<LayerState>, Option<LayerState>)>>, Option<Vec<Tensor>>, Option<Vec<Tensor>>, Option<Vec<Tensor>>, Option<Vec<Tensor>>)
[src]
&self,
input_ids: Option<&Tensor>,
attention_mask: Option<&Tensor>,
encoder_outputs: Option<(Tensor, Option<Vec<Tensor>>, Option<Vec<Tensor>>)>,
decoder_input_ids: Option<&Tensor>,
decoder_attention_mask: Option<&Tensor>,
input_embeds: Option<Tensor>,
decoder_input_embeds: Option<Tensor>,
old_layer_states: Option<Vec<(Option<LayerState>, Option<LayerState>)>>,
train: bool
) -> (Tensor, Tensor, Option<Vec<(Option<LayerState>, Option<LayerState>)>>, Option<Vec<Tensor>>, Option<Vec<Tensor>>, Option<Vec<Tensor>>, Option<Vec<Tensor>>)
Forward pass through the model
Arguments
input_ids
- Optional input tensor of shape (batch size, source_sequence_length). This orinput_embeds
must be provided.attention_mask
- Optional attention mask of shape (batch size, source_sequence_length) for the encoder positions. Positions with a mask with value 0 will be masked.decoder_input_ids
- Optional input tensor of shape (batch size, target_sequence_length). This ordecoder_input_embeds
must be provided.encoder_outputs
- Optional tuple made of a tensor of shape (batch size, source_sequence_length, encoder_hidden_dim) and optional vectors of tensors of length num_encoder_layers with shape (batch size, source_sequence_length, hidden_size). These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.decoder_attention_mask
- Optional attention mask of shape (batch size, target_sequence_length) for the decoder positions. Positions with a mask with value 0 will be masked.input_embeds
- Optional input tensor of shape (batch size, source_sequence_length, embeddings dimension). This orinput_ids
must be provided.decoder_input_embeds
- Optional input tensor of shape (batch size, target_sequence_length, embeddings dimension). This ordecoder_input_ids
must be provided.old_layer_states
- Optional vector of lengthnum_layers
containing tuples of optionalLayerStates
containing th elast calculated key and value pairs for the decoder. This avoids recomputing attention weights at past positions and speeds up decoding.train
- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
Returns
decoder_output
-Tensor
of shape (batch size, target_sequence_length, hidden_size) representing the activations of the last decoder hidden stateencoder_hidden_states
-Tensor
of shape (batch size, source_sequence_length, hidden_size) representing the activations of the last encoder hidden statedecoder_cache
-Option<Vec<(Option<Vec<&LayerState, &LayerState>>)>>
of length n_layer containing the encoder past keys and values for both the self attention and the encoder cross attention of each layer of the decoder.all_encoder_hidden_states
-Option<Vec<Tensor>>
of length num_encoder_layers with shape (batch size, source_sequence_length, hidden_size)all_encoder_attentions
-Option<Vec<Tensor>>
of length num_encoder_layers with shape (batch size, source_sequence_length, hidden_size)all_decoder_hidden_states
-Option<Vec<Tensor>>
of length num_decoder_layers with shape (batch size, target_sequence_length, hidden_size)all_decoder_attentions
-Option<Vec<Tensor>>
of length num_decoder_layers with shape (batch size, target_sequence_length, hidden_size)
Example
use rust_bert::t5::{T5Config, T5Model}; let (batch_size, source_sequence_length, target_sequence_length) = (64, 128, 56); let input_tensor = Tensor::rand(&[batch_size, source_sequence_length], (Int64, device)); let target_tensor = Tensor::rand(&[batch_size, target_sequence_length], (Int64, device)); let encoder_attention_mask = Tensor::ones(&[batch_size, source_sequence_length], (Int64, device)); let decoder_attention_mask = Tensor::ones(&[batch_size, source_sequence_length], (Int64, device)); let ( decoder_output, encoder_hidden_states, decoder_cache, all_encoder_hidden_states, all_encoder_attentions, all_decoder_hidden_states, all_decoder_attentions, ) = no_grad(|| { t5_model.forward_t( Some(&input_tensor), Some(&encoder_attention_mask), None, Some(&target_tensor), Some(&decoder_attention_mask), None, None, None, false, ) });
Auto Trait Implementations
impl RefUnwindSafe for T5Model
impl Send for T5Model
impl !Sync for T5Model
impl Unpin for T5Model
impl UnwindSafe for T5Model
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> From<T> for T
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
impl<V, T> VZip<V> for T where
V: MultiLane<T>,
V: MultiLane<T>,