[][src]Struct rust_bert::pipelines::sequence_classification::SequenceClassificationConfig

pub struct SequenceClassificationConfig {
    pub model_type: ModelType,
    pub model_resource: Resource,
    pub config_resource: Resource,
    pub vocab_resource: Resource,
    pub merges_resource: Option<Resource>,
    pub lower_case: bool,
    pub device: Device,
}

Configuration for SequenceClassificationModel

Contains information regarding the model to load and device to place the model on.

Fields

model_type: ModelType

Model type

model_resource: Resource

Model weights resource (default: pretrained BERT model on CoNLL)

config_resource: Resource

Config resource (default: pretrained BERT model on CoNLL)

vocab_resource: Resource

Vocab resource (default: pretrained BERT model on CoNLL)

merges_resource: Option<Resource>

Merges resource (default: None)

lower_case: bool

Automatically lower case all input upon tokenization (assumes a lower-cased model)

device: Device

Device to place the model on (default: CUDA/GPU when available)

Implementations

impl SequenceClassificationConfig[src]

pub fn new(
    model_type: ModelType,
    model_resource: Resource,
    config_resource: Resource,
    vocab_resource: Resource,
    merges_resource: Option<Resource>,
    lower_case: bool
) -> SequenceClassificationConfig
[src]

Instantiate a new sequence classification configuration of the supplied type.

Arguments

  • model_type - ModelType indicating the model type to load (must match with the actual data to be loaded!)
  • model - The Resource pointing to the model to load (e.g. model.ot)
  • config - The `Resource' pointing to the model configuration to load (e.g. config.json)
  • vocab - The `Resource' pointing to the tokenizer's vocabulary to load (e.g. vocab.txt/vocab.json)
  • vocab - An optional Resource tuple (Option<Resource>) pointing to the tokenizer's merge file to load (e.g. merges.txt), needed only for Roberta.
  • lower_case - A `bool' indicating whether the tokeniser should lower case all input (in case of a lower-cased model)

Trait Implementations

impl Default for SequenceClassificationConfig[src]

fn default() -> SequenceClassificationConfig[src]

Provides a defaultSST-2 sentiment analysis model (English)

Auto Trait Implementations

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<V, T> VZip<V> for T where
    V: MultiLane<T>,