[−][src]Struct rust_bert::pipelines::sequence_classification::SequenceClassificationConfig
Configuration for SequenceClassificationModel
Contains information regarding the model to load and device to place the model on.
Fields
model_type: ModelType
Model type
model_resource: Resource
Model weights resource (default: pretrained BERT model on CoNLL)
config_resource: Resource
Config resource (default: pretrained BERT model on CoNLL)
vocab_resource: Resource
Vocab resource (default: pretrained BERT model on CoNLL)
merges_resource: Option<Resource>
Merges resource (default: None)
lower_case: bool
Automatically lower case all input upon tokenization (assumes a lower-cased model)
device: Device
Device to place the model on (default: CUDA/GPU when available)
Implementations
impl SequenceClassificationConfig
[src]
pub fn new(
model_type: ModelType,
model_resource: Resource,
config_resource: Resource,
vocab_resource: Resource,
merges_resource: Option<Resource>,
lower_case: bool
) -> SequenceClassificationConfig
[src]
model_type: ModelType,
model_resource: Resource,
config_resource: Resource,
vocab_resource: Resource,
merges_resource: Option<Resource>,
lower_case: bool
) -> SequenceClassificationConfig
Instantiate a new sequence classification configuration of the supplied type.
Arguments
model_type
-ModelType
indicating the model type to load (must match with the actual data to be loaded!)- model - The
Resource
pointing to the model to load (e.g. model.ot) - config - The `Resource' pointing to the model configuration to load (e.g. config.json)
- vocab - The `Resource' pointing to the tokenizer's vocabulary to load (e.g. vocab.txt/vocab.json)
- vocab - An optional
Resource
tuple (Option<Resource>
) pointing to the tokenizer's merge file to load (e.g. merges.txt), needed only for Roberta. - lower_case - A `bool' indicating whether the tokeniser should lower case all input (in case of a lower-cased model)
Trait Implementations
impl Default for SequenceClassificationConfig
[src]
fn default() -> SequenceClassificationConfig
[src]
Provides a defaultSST-2 sentiment analysis model (English)
Auto Trait Implementations
impl RefUnwindSafe for SequenceClassificationConfig
impl Send for SequenceClassificationConfig
impl Sync for SequenceClassificationConfig
impl Unpin for SequenceClassificationConfig
impl UnwindSafe for SequenceClassificationConfig
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> From<T> for T
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
impl<V, T> VZip<V> for T where
V: MultiLane<T>,
V: MultiLane<T>,