[−][src]Struct rust_bert::bart::BartModel
BART Base model
Base architecture for BART model. Usually complemented with a task-specific head, such as a language model head. It is made of the following blocks:
encoder
:BartEncoder
(transformer) made of a vector of encoding layersdecoder
:BartDecoder
(transformer) made of a vector of decoding layers with self attention and encoder cross-attention. caching is implemented for the decoder to avoid recalculating static states (encoder key/values and previously calculated decoder key/values)generation_mode
: flag indicating if the model should run in generation mode (a decoder start token must then be provided)pad_token_id
: padding token id
Implementations
impl BartModel
[src]
pub fn new<'p, P>(p: P, config: &BartConfig, generation_mode: bool) -> BartModel where
P: Borrow<Path<'p>>,
[src]
P: Borrow<Path<'p>>,
Build a new BartModel
Arguments
p
- Variable store path for the root of the BART modelconfig
-BartConfig
object defining the model architecturegeneration_mode
- flag indicating if the model should run in generation mode (a decoder start token must then be provided)
Example
use rust_bert::bart::{BartConfig, BartModel}; use rust_bert::Config; use std::path::Path; use tch::{nn, Device}; let config_path = Path::new("path/to/config.json"); let device = Device::Cpu; let p = nn::VarStore::new(device); let config = BartConfig::from_file(config_path); let generation_mode = true; let bart: BartModel = BartModel::new(&p.root() / "bart", &config, generation_mode);
pub fn forward_t(
&self,
input_ids: Option<&Tensor>,
attention_mask: Option<&Tensor>,
decoder_input_ids: Option<&Tensor>,
encoder_outputs: Option<(Tensor, Option<Vec<Tensor>>, Option<Vec<Tensor>>)>,
decoder_attention_mask: Option<&Tensor>,
layer_states: Option<Vec<(Option<LayerState>, Option<LayerState>)>>,
train: bool
) -> (Tensor, Tensor, Option<Vec<(Option<LayerState>, Option<LayerState>)>>, Option<Vec<Tensor>>, Option<Vec<Tensor>>, Option<Vec<Tensor>>, Option<Vec<Tensor>>)
[src]
&self,
input_ids: Option<&Tensor>,
attention_mask: Option<&Tensor>,
decoder_input_ids: Option<&Tensor>,
encoder_outputs: Option<(Tensor, Option<Vec<Tensor>>, Option<Vec<Tensor>>)>,
decoder_attention_mask: Option<&Tensor>,
layer_states: Option<Vec<(Option<LayerState>, Option<LayerState>)>>,
train: bool
) -> (Tensor, Tensor, Option<Vec<(Option<LayerState>, Option<LayerState>)>>, Option<Vec<Tensor>>, Option<Vec<Tensor>>, Option<Vec<Tensor>>, Option<Vec<Tensor>>)
Forward pass through the model
Arguments
input_ids
- Optional input tensor of shape (batch size, source_sequence_length). Must be provided when not running in generation modeattention_mask
- Optional attention mask of shape (batch size, source_sequence_length) for the encoder positions. Positions with a mask with value 0 will be masked.decoder_input_ids
- Optional input tensor of shape (batch size, target_sequence_length). Must be provided when running in generation mode (e.g. initialiazed with a BOS token)encoder_outputs
- Optional tuple made of a tensor of shape (batch size, source_sequence_length, encoder_hidden_dim) and optional vectors of tensors of length num_encoder_layers with shape (batch size, source_sequence_length, hidden_size). These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.decoder_attention_mask
- Optional attention mask of shape (batch size, target_sequence_length) for the decoder positions. Positions with a mask with value 0 will be masked.train
- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
Returns
decoder_output
-Tensor
of shape (batch size, target_sequence_length, hidden_size) representing the activations of the last decoder hidden stateencoder_hidden_states
-Tensor
of shape (batch size, source_sequence_length, hidden_size) representing the activations of the last encoder hidden statedecoder_cache
-(Option<Tensor>, Option<Vec<&LayerState, &LayerState>>)
of length n_layer containing the encoder padding mask and past keys and values for both the self attention and the encoder cross attention of each layer of the decoder.all_encoder_hidden_states
-Option<Vec<Tensor>>
of length num_encoder_layers with shape (batch size, source_sequence_length, hidden_size)all_encoder_attentions
-Option<Vec<Tensor>>
of length num_encoder_layers with shape (batch size, source_sequence_length, hidden_size)all_decoder_hidden_states
-Option<Vec<Tensor>>
of length num_decoder_layers with shape (batch size, target_sequence_length, hidden_size)all_decoder_attentions
-Option<Vec<Tensor>>
of length num_decoder_layers with shape (batch size, target_sequence_length, hidden_size)
Example
use rust_bert::bart::{BartConfig, BartModel}; let (batch_size, source_sequence_length, target_sequence_length) = (64, 128, 56); let input_tensor = Tensor::rand(&[batch_size, source_sequence_length], (Int64, device)); let target_tensor = Tensor::rand(&[batch_size, target_sequence_length], (Int64, device)); let encoder_attention_mask = Tensor::ones(&[batch_size, source_sequence_length], (Int64, device)); let decoder_attention_mask = Tensor::ones(&[batch_size, source_sequence_length], (Int64, device)); let ( decoder_output, encoder_hidden_states, decoder_cache, all_encoder_hidden_states, all_encoder_attentions, all_decoder_hidden_states, all_decoder_attentions, ) = no_grad(|| { bart_model.forward_t( Some(&input_tensor), Some(&encoder_attention_mask), Some(&target_tensor), None, Some(&decoder_attention_mask), None, false, ) });
Auto Trait Implementations
impl !RefUnwindSafe for BartModel
impl !Send for BartModel
impl !Sync for BartModel
impl Unpin for BartModel
impl !UnwindSafe for BartModel
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> From<T> for T
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
impl<V, T> VZip<V> for T where
V: MultiLane<T>,
V: MultiLane<T>,