[−][src]Struct rust_bert::bart::BartForSequenceClassification
BART Model for sequence classification
BART model with a classification head It is made of the following blocks:
base_model
:BartModel
Base BART modelclassification_head
:BartClassificationHead
made of 2 linear layers mapping hidden states to a target classeos_token_id
: token id for the EOS token carrying the pooled representation for classification
Implementations
impl BartForSequenceClassification
[src]
pub fn new<'p, P>(p: P, config: &BartConfig) -> BartForSequenceClassification where
P: Borrow<Path<'p>>,
[src]
P: Borrow<Path<'p>>,
Build a new BartForSequenceClassification
Arguments
p
- Variable store path for the root of the BART modelconfig
-BartConfig
object defining the model architecture
Example
use rust_bert::bart::{BartConfig, BartForSequenceClassification}; use rust_bert::Config; use std::path::Path; use tch::{nn, Device}; let config_path = Path::new("path/to/config.json"); let device = Device::Cpu; let p = nn::VarStore::new(device); let config = BartConfig::from_file(config_path); let generation_mode = true; let bart: BartForSequenceClassification = BartForSequenceClassification::new(&p.root() / "bart", &config);
pub fn forward_t(
&mut self,
input_ids: &Tensor,
attention_mask: Option<&Tensor>,
encoder_outputs: Option<(Tensor, Option<Vec<Tensor>>, Option<Vec<Tensor>>)>,
decoder_input_ids: Option<&Tensor>,
decoder_attention_mask: Option<&Tensor>,
train: bool
) -> (Tensor, Tensor, Option<Vec<Tensor>>, Option<Vec<Tensor>>, Option<Vec<Tensor>>, Option<Vec<Tensor>>)
[src]
&mut self,
input_ids: &Tensor,
attention_mask: Option<&Tensor>,
encoder_outputs: Option<(Tensor, Option<Vec<Tensor>>, Option<Vec<Tensor>>)>,
decoder_input_ids: Option<&Tensor>,
decoder_attention_mask: Option<&Tensor>,
train: bool
) -> (Tensor, Tensor, Option<Vec<Tensor>>, Option<Vec<Tensor>>, Option<Vec<Tensor>>, Option<Vec<Tensor>>)
Forward pass through the model
Arguments
input_ids
- Optional input tensor of shape (batch size, source_sequence_length). Must be provided when not running in generation modeattention_mask
- Optional attention mask of shape (batch size, source_sequence_length) for the encoder positions. Positions with a mask with value 0 will be masked.encoder_outputs
- Optional tuple made of a tensor of shape (batch size, source_sequence_length, encoder_hidden_dim) and optional vectors of tensors of length num_encoder_layers with shape (batch size, source_sequence_length, hidden_size). These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.decoder_input_ids
- Optional input tensor of shape (batch size, target_sequence_length). Must be provided when running in generation mode (e.g. initialiazed with a BOS token)decoder_attention_mask
- Optional attention mask of shape (batch size, target_sequence_length) for the decoder positions. Positions with a mask with value 0 will be masked.train
- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
Returns
logits
-Tensor
of shape (batch size, num_classes) representing the logits for each class item and batch itemencoder_hidden_states
-Tensor
of shape (batch size, source_sequence_length, hidden_size) representing the activations of the last encoder hidden stateall_encoder_hidden_states
-Option<Vec<Tensor>>
of length num_encoder_layers with shape (batch size, source_sequence_length, hidden_size)all_encoder_attentions
-Option<Vec<Tensor>>
of length num_encoder_layers with shape (batch size, source_sequence_length, hidden_size)all_decoder_hidden_states
-Option<Vec<Tensor>>
of length num_decoder_layers with shape (batch size, target_sequence_length, hidden_size)all_decoder_attentions
-Option<Vec<Tensor>>
of length num_decoder_layers with shape (batch size, target_sequence_length, hidden_size)
Example
use rust_bert::bart::{BartConfig, BartForConditionalGeneration}; let (batch_size, source_sequence_length, target_sequence_length) = (64, 128, 56); let input_tensor = Tensor::rand(&[batch_size, source_sequence_length], (Int64, device)); let target_tensor = Tensor::rand(&[batch_size, target_sequence_length], (Int64, device)); let encoder_attention_mask = Tensor::ones(&[batch_size, source_sequence_length], (Int64, device)); let decoder_attention_mask = Tensor::ones(&[batch_size, source_sequence_length], (Int64, device)); let (decoder_output, encoder_hidden_states, cache, all_encoder_hidden_states, all_encoder_attentions, all_decoder_hidden_states, all_decoder_attentions) = no_grad(|| { bart_model .forward_t(Some(&input_tensor), Some(&encoder_attention_mask), None, Some(&target_tensor), Some(&decoder_attention_mask), None, false) });
Auto Trait Implementations
impl !RefUnwindSafe for BartForSequenceClassification
impl !Send for BartForSequenceClassification
impl !Sync for BartForSequenceClassification
impl Unpin for BartForSequenceClassification
impl !UnwindSafe for BartForSequenceClassification
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> From<T> for T
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
impl<V, T> VZip<V> for T where
V: MultiLane<T>,
V: MultiLane<T>,