[][src]Struct rust_bert::bart::BartForConditionalGeneration

pub struct BartForConditionalGeneration { /* fields omitted */ }

BART Model for conditional generation

BART model with a vocabulary decoding head It is made of the following blocks:

  • base_model: BartModel Base BART model
  • linear: Linear layer without bias tied to the weights of the token id embeddings

Implementations

impl BartForConditionalGeneration[src]

pub fn new<'p, P>(
    p: P,
    config: &BartConfig,
    generation_mode: bool
) -> BartForConditionalGeneration where
    P: Borrow<Path<'p>>, 
[src]

Build a new BartForConditionalGeneration

Arguments

  • p - Variable store path for the root of the BART model
  • config - BartConfig object defining the model architecture
  • generation_mode - flag indicating if the model should run in generation mode (a decoder start token must then be provided)

Example

use rust_bert::bart::{BartConfig, BartForConditionalGeneration};
use rust_bert::Config;
use std::path::Path;
use tch::{nn, Device};

let config_path = Path::new("path/to/config.json");
let device = Device::Cpu;
let p = nn::VarStore::new(device);
let config = BartConfig::from_file(config_path);
let generation_mode = true;
let bart: BartForConditionalGeneration =
    BartForConditionalGeneration::new(&p.root() / "bart", &config, generation_mode);

pub fn forward_t(
    &self,
    input_ids: Option<&Tensor>,
    attention_mask: Option<&Tensor>,
    encoder_outputs: Option<(Tensor, Option<Vec<Tensor>>, Option<Vec<Tensor>>)>,
    decoder_input_ids: Option<&Tensor>,
    decoder_attention_mask: Option<&Tensor>,
    old_layer_states: Option<Vec<(Option<LayerState>, Option<LayerState>)>>,
    train: bool
) -> (Tensor, Tensor, Option<Vec<(Option<LayerState>, Option<LayerState>)>>, Option<Vec<Tensor>>, Option<Vec<Tensor>>, Option<Vec<Tensor>>, Option<Vec<Tensor>>)
[src]

Forward pass through the model

Arguments

  • input_ids - Optional input tensor of shape (batch size, source_sequence_length). Must be provided when not running in generation mode
  • attention_mask - Optional attention mask of shape (batch size, source_sequence_length) for the encoder positions. Positions with a mask with value 0 will be masked.
  • encoder_outputs - Optional tuple made of a tensor of shape (batch size, source_sequence_length, encoder_hidden_dim) and optional vectors of tensors of length num_encoder_layers with shape (batch size, source_sequence_length, hidden_size). These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.
  • decoder_input_ids - Optional input tensor of shape (batch size, target_sequence_length). Must be provided when running in generation mode (e.g. initialiazed with a BOS token)
  • decoder_attention_mask - Optional attention mask of shape (batch size, target_sequence_length) for the decoder positions. Positions with a mask with value 0 will be masked.
  • train - boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.

Returns

  • lm_logits - Tensor of shape (batch size, target_sequence_length, vocab_size) representing the logits for each vocab item and position
  • encoder_hidden_states - Tensor of shape (batch size, source_sequence_length, hidden_size) representing the activations of the last encoder hidden state
  • all_encoder_hidden_states - Option<Vec<Tensor>> of length num_encoder_layers with shape (batch size, source_sequence_length, hidden_size)
  • all_encoder_attentions - Option<Vec<Tensor>> of length num_encoder_layers with shape (batch size, source_sequence_length, hidden_size)
  • all_decoder_hidden_states - Option<Vec<Tensor>> of length num_decoder_layers with shape (batch size, target_sequence_length, hidden_size)
  • all_decoder_attentions - Option<Vec<Tensor>> of length num_decoder_layers with shape (batch size, target_sequence_length, hidden_size)

Example

use rust_bert::bart::{BartConfig, BartForConditionalGeneration};
 let (batch_size, source_sequence_length, target_sequence_length) = (64, 128, 56);
 let input_tensor = Tensor::rand(&[batch_size, source_sequence_length], (Int64, device));
 let target_tensor = Tensor::rand(&[batch_size, target_sequence_length], (Int64, device));
 let encoder_attention_mask = Tensor::ones(&[batch_size, source_sequence_length], (Int64, device));
 let decoder_attention_mask = Tensor::ones(&[batch_size, source_sequence_length], (Int64, device));

 let (decoder_output, encoder_hidden_states, cache,
      all_encoder_hidden_states, all_encoder_attentions,
      all_decoder_hidden_states, all_decoder_attentions) = no_grad(|| {
   bart_model
        .forward_t(Some(&input_tensor),
                   Some(&encoder_attention_mask),
                   None,
                   Some(&target_tensor),
                   Some(&decoder_attention_mask),
                   None,
                   false)
   });

pub fn encode(
    &self,
    input_ids: &Tensor,
    attention_mask: Option<&Tensor>
) -> Tensor
[src]

Trait Implementations

impl LMHeadModel for BartForConditionalGeneration[src]

fn forward_t(
    &self,
    input_ids: &Option<Tensor>,
    cache: Cache,
    attention_mask: &Option<Tensor>,
    _token_type_ids: &Option<Tensor>,
    _position_ids: &Option<Tensor>,
    _input_embeds: &Option<Tensor>,
    encoder_outputs: Option<&Tensor>,
    decoder_input_ids: &Option<Tensor>,
    train: bool
) -> Result<(Tensor, Option<Tensor>, Cache, Option<Vec<Tensor>>, Option<Vec<Tensor>>), &'static str>
[src]

Forward pass through the model

Arguments

  • input_ids - Optional input tensor of shape (batch size, sequence_length). If None, pre-computed embeddings must be provided (see input_embeds)
  • layer_past - Optional vector of length num_layers containing tuples of optional LayerStates containing th elast calculated key and value pairs for the decoder. This avoids recomputing attention weights at past positions and speeds up decoding.
  • attention_mask - Optional mask of shape (batch size, sequence_length). Masked position have value 0, non-masked value 1. If None set to 1
  • input_embeds - Unused for BART
  • token_type_ids - Unused for BART
  • position_ids - Unused for BART
  • encoder_outputs - Optional tensor of shape (batch size, source_sequence_length, hidden_size). When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.
  • decoder_input_ids - Optional input tensor of shape (batch size, target_sequence_length). Must be provided when running in generation mode (e.g. initialized with a BOS token)
  • train - boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.

Returns

  • lm_logits - Tensor of shape (batch size, sequence_length, vocab_size) representing the logits for each vocab item and position
  • past - BartCache made of Option<Vec<(Option<Vec<&LayerState, &LayerState>>)>> of length n_layer containing the encoder past keys and values for both the self attention and the encoder cross attention of each layer of the decoder.
  • encoder_hidden_states - Option<Tensor> Hidden states for the encoder
  • hidden_states - None
  • attentions - None

Example

use rust_bert::pipelines::generation::LMHeadModel;
use rust_bert::bart::{BartForConditionalGeneration, BartConfig};
 let (batch_size, source_sequence_length, target_sequence_length) = (64, 128, 56);
 let input_tensor = Tensor::rand(&[batch_size, source_sequence_length], (Int64, device));
 let target_tensor = Tensor::rand(&[batch_size, target_sequence_length], (Int64, device));
 let encoder_attention_mask = Tensor::ones(&[batch_size, source_sequence_length], (Int64, device));
 let decoder_attention_mask = Tensor::ones(&[batch_size, source_sequence_length], (Int64, device));

 let (decoder_output, encoder_hidden_states, cache,
      all_encoder_hidden_states, all_encoder_attentions,
      all_decoder_hidden_states, all_decoder_attentions) = no_grad(|| {
   bart_model
        .forward_t(Some(&input_tensor),
                   Some(&encoder_attention_mask),
                   None,
                   Some(&target_tensor),
                   Some(&decoder_attention_mask),
                   None,
                   false)
   });

impl LanguageGenerator<BartForConditionalGeneration, RobertaVocab, RobertaTokenizer> for BartGenerator[src]

Auto Trait Implementations

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<V, T> VZip<V> for T where
    V: MultiLane<T>,