pub struct ReformerForSequenceClassification { /* private fields */ }
Expand description
Reformer Model for sequence classification
Reformer model with a classification head It is made of the following blocks:
reformer
:ReformerModel
Base Reformer modelclassifier
:ReformerClassificationHead
projecting hidden states to the target labels
Implementations§
source§impl ReformerForSequenceClassification
impl ReformerForSequenceClassification
sourcepub fn new<'p, P>(
p: P,
config: &ReformerConfig
) -> Result<ReformerForSequenceClassification, RustBertError>
pub fn new<'p, P>( p: P, config: &ReformerConfig ) -> Result<ReformerForSequenceClassification, RustBertError>
Build a new ReformerForSequenceClassification
Arguments
p
- Variable store path for the root of the BART modelconfig
-ReformerConfig
object defining the model architecture
Example
use rust_bert::reformer::{ReformerConfig, ReformerForSequenceClassification};
use rust_bert::Config;
use std::path::Path;
use tch::{nn, Device};
let config_path = Path::new("path/to/config.json");
let device = Device::Cpu;
let p = nn::VarStore::new(device);
let config = ReformerConfig::from_file(config_path);
let reformer_model: ReformerForSequenceClassification =
ReformerForSequenceClassification::new(&p.root(), &config).unwrap();
sourcepub fn forward_t(
&self,
input_ids: Option<&Tensor>,
position_ids: Option<&Tensor>,
input_embeds: Option<&Tensor>,
attention_mask: Option<&Tensor>,
num_hashes: Option<i64>,
train: bool
) -> Result<ReformerClassificationOutput, RustBertError>
pub fn forward_t( &self, input_ids: Option<&Tensor>, position_ids: Option<&Tensor>, input_embeds: Option<&Tensor>, attention_mask: Option<&Tensor>, num_hashes: Option<i64>, train: bool ) -> Result<ReformerClassificationOutput, RustBertError>
Forward pass through the model
Arguments
input_ids
- Optional input tensor of shape (batch size, sequence_length). Must be provided when no pre-computed embeddings are given.position_ids
- Optional input tensor of shape (batch size, sequence_length). If not provided will be calculated on the fly starting from position 0.input_embeds
- Optional input tensor of shape (batch size, sequence_length, embeddings_dim). Must be provided when no input ids are given.attention_mask
- Optional attention mask of shape (batch size, sequence_length). Positions with a mask with value 0 will be masked.num_hashes
- Optional specification of the number of hashes to use. If not provided will use the value provided in the model configuration.train
- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
Returns
ReformerClassificationOutput
containing:logits
-Tensor
of shape (batch size, sequence_length, num_classes) representing the logits for each target classall_hidden_states
-Option<Vec<Tensor>>
of length n_layers with shape (batch size, sequence_length, hidden_size)all_attentions
-Option<Vec<Tensor>>
of length n_layers with shape (batch size, sequence_length, hidden_size)
Example
use rust_bert::reformer::{ReformerConfig, ReformerForSequenceClassification};
let (batch_size, sequence_length) = (64, 128);
let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device));
let input_positions = Tensor::arange(sequence_length, (Kind::Int64, device)).unsqueeze(0).expand(&[batch_size, sequence_length], true);
let attention_mask = Tensor::ones(&[batch_size, sequence_length], (Int64, device));
let model_output = no_grad(|| {
reformer_model.forward_t(
Some(&input_tensor),
Some(&input_positions),
None,
Some(&attention_mask),
Some(4),
false,
)
});
Auto Trait Implementations§
impl RefUnwindSafe for ReformerForSequenceClassification
impl Send for ReformerForSequenceClassification
impl !Sync for ReformerForSequenceClassification
impl Unpin for ReformerForSequenceClassification
impl UnwindSafe for ReformerForSequenceClassification
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more