pub struct GptJModel { /* private fields */ }
Expand description
GPT-J Base model
Base architecture for GPT-J model. Usually complemented with a task-specific head, such as a language model head. It is made of the following blocks:
wte
:token
embeddingsh
: Encoder (transformer) made of a vector of layers. Each layer is made of a multi-head attention layer, a layer-normalization layer, and a MLP made of linear layers.output_past
: flag indicating if the model should return a past state. This can be fed back to the model to improve the quality of text generated.output_hidden_states
: flag indicating if the model should return all hidden states (as opposed to only the last layer)output_attentions
: flag indicating if the model should return activation weights
Implementations§
source§impl GptJModel
impl GptJModel
sourcepub fn new<'p, P>(p: P, config: &GptJConfig) -> GptJModel
pub fn new<'p, P>(p: P, config: &GptJConfig) -> GptJModel
Build a new GptJModel
Arguments
p
- Variable store path for the root of the GPT-J modelconfig
-GptJConfig
object defining the model architecture
Example
use rust_bert::gpt_j::{GptJConfig, GptJModel};
use rust_bert::Config;
use std::path::Path;
use tch::{nn, Device};
let config_path = Path::new("path/to/config.json");
let device = Device::Cpu;
let p = nn::VarStore::new(device);
let config = GptJConfig::from_file(config_path);
let gpt_j: GptJModel = GptJModel::new(&p.root() / "gpt_j", &config);
sourcepub fn forward_t(
&self,
input_ids: Option<&Tensor>,
layer_past: Option<Vec<Option<LayerState>>>,
attention_mask: Option<&Tensor>,
token_type_ids: Option<&Tensor>,
_position_ids: Option<&Tensor>,
input_embeds: Option<&Tensor>,
train: bool
) -> Result<GptJModelOutput, RustBertError>
pub fn forward_t( &self, input_ids: Option<&Tensor>, layer_past: Option<Vec<Option<LayerState>>>, attention_mask: Option<&Tensor>, token_type_ids: Option<&Tensor>, _position_ids: Option<&Tensor>, input_embeds: Option<&Tensor>, train: bool ) -> Result<GptJModelOutput, RustBertError>
Forward pass through the model
Arguments
input_ids
- Optional input tensor of shape (batch size, sequence_length). If None, pre-computed embeddings must be provided (seeinput_embeds
)layer_past
- Optional vector of length n_layer containing the past keys and values of each layer of shape (2, batch size, number of heads, past_sequence_length, hidden size per head). When provided, these are concatenated with the current input keys and values.attention_mask
- Optional mask of shape (batch size, sequence_length). Masked position have value 0, non-masked value 1. If None set to 1input_embeds
- Optional pre-computed input embeddings of shape (batch size, sequence_length, hidden_size). If None, input ids must be provided (seeinput_ids
)token_type_ids
- Optional token type ids used to indicate the portion of the input the token belongs to. If not None, token type embeddings will be added to the token and position embeddings._position_ids
- Optional position ids of shape (batch size, sequence_length). If None, will be incremented starting from the length of the past input.train
- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
Returns
GptJModelOutput
containing:output
-Tensor
of shape (batch size, sequence_length, vocab_size) representing the activations of the last hidden statecache
-Option<Vec<Tensor>>
of length n_layer containing the past keys and values of each layer of shape (2, batch size, number of heads, past_sequence_length, hidden size per head)all_hidden_states
-Option<Vec<Tensor>>
of length num_hidden_layers with shape (batch size, sequence_length, hidden_size)all_attentions
-Option<Vec<Tensor>>
of length num_hidden_layers with shape (batch size, sequence_length, hidden_size)
Example
use rust_bert::gpt_j::{GptJConfig, GptJModel, LayerState};
let (batch_size, sequence_length, past_sequence_length) = (64, 128, 56);
let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device));
let mut past: Vec<Option<LayerState>> = Vec::with_capacity(config.n_layer as usize);
for _ in 0..config.n_layer as usize {
past.push(Some(LayerState {
prev_key: Tensor::rand(
&[
batch_size,
config.n_head,
past_sequence_length,
config.n_embd / config.n_head,
],
(Double, device),
),
prev_value: Tensor::rand(
&[
batch_size,
config.n_head,
past_sequence_length,
config.n_embd / config.n_head,
],
(Double, device),
),
}))
}
let attention_mask = Tensor::zeros(&[batch_size, sequence_length], (Int64, device));
let token_type_ids = Tensor::ones(&[batch_size, sequence_length], (Int64, device));
let model_output = no_grad(|| {
gpt_j_model
.forward_t(
Some(&input_tensor),
Some(past),
Some(&attention_mask),
Some(&token_type_ids),
None,
None,
false,
)
.unwrap()
});
Auto Trait Implementations§
impl RefUnwindSafe for GptJModel
impl Send for GptJModel
impl !Sync for GptJModel
impl Unpin for GptJModel
impl UnwindSafe for GptJModel
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more