Struct rust_bert::models::deberta::DebertaForMaskedLM
source · pub struct DebertaForMaskedLM { /* private fields */ }Expand description
DeBERTa for masked language model
Base DeBERTa model with a masked language model head to predict missing tokens, for example "Looks like one [MASK] is missing" -> "person"
It is made of the following blocks:
deberta: Base DeBERTa modelcls: LM prediction head
Implementations§
source§impl DebertaForMaskedLM
impl DebertaForMaskedLM
sourcepub fn new<'p, P>(p: P, config: &DebertaConfig) -> DebertaForMaskedLM
pub fn new<'p, P>(p: P, config: &DebertaConfig) -> DebertaForMaskedLM
Build a new DebertaForMaskedLM
Arguments
p- Variable store path for the root of the BertForMaskedLM modelconfig-DebertaConfigobject defining the model architecture and vocab size
Example
use rust_bert::deberta::{DebertaConfig, DebertaForMaskedLM};
use rust_bert::Config;
use std::path::Path;
use tch::{nn, Device};
let config_path = Path::new("path/to/config.json");
let device = Device::Cpu;
let p = nn::VarStore::new(device);
let config = DebertaConfig::from_file(config_path);
let model = DebertaForMaskedLM::new(&p.root(), &config);sourcepub fn forward_t(
&self,
input_ids: Option<&Tensor>,
attention_mask: Option<&Tensor>,
token_type_ids: Option<&Tensor>,
position_ids: Option<&Tensor>,
input_embeds: Option<&Tensor>,
train: bool
) -> Result<DebertaMaskedLMOutput, RustBertError>
pub fn forward_t( &self, input_ids: Option<&Tensor>, attention_mask: Option<&Tensor>, token_type_ids: Option<&Tensor>, position_ids: Option<&Tensor>, input_embeds: Option<&Tensor>, train: bool ) -> Result<DebertaMaskedLMOutput, RustBertError>
Forward pass through the model
Arguments
input_ids- Optional input tensor of shape (batch size, sequence_length). If None, pre-computed embeddings must be provided (see input_embeds)attention_mask- Optional mask of shape (batch size, sequence_length). Masked position have value 0, non-masked value 1. If None set to 1token_type_ids-Optional segment id of shape (batch size, sequence_length). Convention is value of 0 for the first sentence (incl. SEP) and 1 for the second sentence. If None set to 0.position_ids- Optional position ids of shape (batch size, sequence_length). If None, will be incremented from 0.input_embeds- Optional pre-computed input embeddings of shape (batch size, sequence_length, hidden_size). If None, input ids must be provided (see input_ids)train- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
Returns
DebertaMaskedLMOutputcontaining:prediction_scores-Tensorof shape (batch size, sequence_length, vocab_size)all_hidden_states-Option<Vec<Tensor>>of length num_hidden_layers with shape (batch size, sequence_length, hidden_size)all_attentions-Option<Vec<Tensor>>of length num_hidden_layers with shape (batch size, sequence_length, hidden_size)
Example
let (batch_size, sequence_length) = (64, 128);
let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Kind::Int64, device));
let mask = Tensor::zeros(&[batch_size, sequence_length], (Kind::Int64, device));
let token_type_ids = Tensor::zeros(&[batch_size, sequence_length], (Kind::Int64, device));
let position_ids = Tensor::arange(sequence_length, (Kind::Int64, device))
.expand(&[batch_size, sequence_length], true);
let model_output = no_grad(|| {
model.forward_t(
Some(&input_tensor),
Some(&mask),
Some(&token_type_ids),
Some(&position_ids),
None,
false,
)
});Auto Trait Implementations§
impl RefUnwindSafe for DebertaForMaskedLM
impl Send for DebertaForMaskedLM
impl !Sync for DebertaForMaskedLM
impl Unpin for DebertaForMaskedLM
impl UnwindSafe for DebertaForMaskedLM
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more