pub struct BertLayer { /* private fields */ }Expand description
BERT Layer
Layer used in BERT encoders. It is made of the following blocks:
attention: self-attentionBertAttentionlayercross_attention: (optional) cross-attentionBertAttentionlayer (if the model is used as a decoder)is_decoder: flag indicating if the model is used as a decoderintermediate:BertIntermediateintermediate layeroutput:BertOutputoutput layer
Implementations§
source§impl BertLayer
impl BertLayer
sourcepub fn new<'p, P>(p: P, config: &BertConfig) -> BertLayer
pub fn new<'p, P>(p: P, config: &BertConfig) -> BertLayer
Build a new BertLayer
Arguments
p- Variable store path for the root of the BERT modelconfig-BertConfigobject defining the model architecture
Example
use rust_bert::bert::{BertConfig, BertLayer};
use rust_bert::Config;
use std::path::Path;
use tch::{nn, Device};
let config_path = Path::new("path/to/config.json");
let device = Device::Cpu;
let p = nn::VarStore::new(device);
let config = BertConfig::from_file(config_path);
let layer: BertLayer = BertLayer::new(&p.root(), &config);sourcepub fn forward_t(
&self,
hidden_states: &Tensor,
mask: Option<&Tensor>,
encoder_hidden_states: Option<&Tensor>,
encoder_mask: Option<&Tensor>,
train: bool
) -> BertLayerOutput
pub fn forward_t( &self, hidden_states: &Tensor, mask: Option<&Tensor>, encoder_hidden_states: Option<&Tensor>, encoder_mask: Option<&Tensor>, train: bool ) -> BertLayerOutput
Forward pass through the layer
Arguments
hidden_states- input tensor of shape (batch size, sequence_length, hidden_size).mask- Optional mask of shape (batch size, sequence_length). Masked position have value 0, non-masked value 1. If None set to 1encoder_hidden_states- Optional encoder hidden state of shape (batch size, encoder_sequence_length, hidden_size). If the model is defined as a decoder and theencoder_hidden_statesis not None, used in the cross-attention layer as keys and values (query from the decoder).encoder_mask- Optional encoder attention mask of shape (batch size, encoder_sequence_length). If the model is defined as a decoder and theencoder_hidden_statesis not None, used to mask encoder values. Positions with value 0 will be masked.train- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
Returns
BertLayerOutputcontaining:hidden_state-Tensorof shape (batch size, sequence_length, hidden_size)attention_scores-Option<Tensor>of shape (batch size, sequence_length, hidden_size)cross_attention_scores-Option<Tensor>of shape (batch size, sequence_length, hidden_size)
Example
let layer: BertLayer = BertLayer::new(&vs.root(), &config);
let (batch_size, sequence_length, hidden_size) = (64, 128, 512);
let input_tensor = Tensor::rand(
&[batch_size, sequence_length, hidden_size],
(Kind::Float, device),
);
let mask = Tensor::zeros(&[batch_size, sequence_length], (Kind::Int64, device));
let layer_output = no_grad(|| layer.forward_t(&input_tensor, Some(&mask), None, None, false));Auto Trait Implementations§
impl RefUnwindSafe for BertLayer
impl Send for BertLayer
impl !Sync for BertLayer
impl Unpin for BertLayer
impl UnwindSafe for BertLayer
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more