Struct rust_bert::models::bert::BertEmbeddings
source · pub struct BertEmbeddings { /* private fields */ }
Expand description
BertEmbeddings implementation for BERT model
Implementation of the BertEmbedding
trait for BERT models
Trait Implementations§
source§impl BertEmbedding for BertEmbeddings
impl BertEmbedding for BertEmbeddings
source§fn new<'p, P>(p: P, config: &BertConfig) -> BertEmbeddings
fn new<'p, P>(p: P, config: &BertConfig) -> BertEmbeddings
Build a new BertEmbeddings
Arguments
p
- Variable store path for the root of the BertEmbeddings modelconfig
-BertConfig
object defining the model architecture and vocab/hidden size
Example
use rust_bert::bert::{BertConfig, BertEmbedding, BertEmbeddings};
use rust_bert::Config;
use std::path::Path;
use tch::{nn, Device};
let config_path = Path::new("path/to/config.json");
let device = Device::Cpu;
let p = nn::VarStore::new(device);
let config = BertConfig::from_file(config_path);
let bert_embeddings = BertEmbeddings::new(&p.root() / "bert_embeddings", &config);
source§fn forward_t(
&self,
input_ids: Option<&Tensor>,
token_type_ids: Option<&Tensor>,
position_ids: Option<&Tensor>,
input_embeds: Option<&Tensor>,
train: bool
) -> Result<Tensor, RustBertError>
fn forward_t( &self, input_ids: Option<&Tensor>, token_type_ids: Option<&Tensor>, position_ids: Option<&Tensor>, input_embeds: Option<&Tensor>, train: bool ) -> Result<Tensor, RustBertError>
Forward pass through the embedding layer
Arguments
input_ids
- Optional input tensor of shape (batch size, sequence_length). If None, pre-computed embeddings must be provided (see input_embeds)token_type_ids
-Optional segment id of shape (batch size, sequence_length). Convention is value of 0 for the first sentence (incl. SEP) and 1 for the second sentence. If None set to 0.position_ids
- Optional position ids of shape (batch size, sequence_length). If None, will be incremented from 0.input_embeds
- Optional pre-computed input embeddings of shape (batch size, sequence_length, hidden_size). If None, input ids must be provided (see input_ids)train
- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
Returns
embedded_output
-Tensor
of shape (batch size, sequence_length, hidden_size)
Example
let (batch_size, sequence_length) = (64, 128);
let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device));
let token_type_ids = Tensor::zeros(&[batch_size, sequence_length], (Int64, device));
let position_ids = Tensor::arange(sequence_length, (Int64, device))
.expand(&[batch_size, sequence_length], true);
let embedded_output = no_grad(|| {
bert_embeddings
.forward_t(
Some(&input_tensor),
Some(&token_type_ids),
Some(&position_ids),
None,
false,
)
.unwrap()
});
Auto Trait Implementations§
impl RefUnwindSafe for BertEmbeddings
impl Send for BertEmbeddings
impl !Sync for BertEmbeddings
impl Unpin for BertEmbeddings
impl UnwindSafe for BertEmbeddings
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more