Struct rust_bert::models::t5::T5ForConditionalGeneration
source · pub struct T5ForConditionalGeneration { /* private fields */ }Expand description
T5 Model for conditional generation
T5 model with a vocabulary decoding head It is made of the following blocks:
base_model:T5ModelBase T5 modelmodel_dim:f64representation of the model dimension for scaling of the generated logits
Implementations§
source§impl T5ForConditionalGeneration
impl T5ForConditionalGeneration
sourcepub fn new<'p, P>(p: P, config: &T5Config) -> T5ForConditionalGenerationwhere
P: Borrow<Path<'p>>,
pub fn new<'p, P>(p: P, config: &T5Config) -> T5ForConditionalGenerationwhere P: Borrow<Path<'p>>,
Build a new T5ForConditionalGeneration
Arguments
p- Variable store path for the root of the BART modelconfig-T5Configobject defining the model architecture
Example
use rust_bert::t5::{T5Config, T5ForConditionalGeneration};
use rust_bert::Config;
use std::path::Path;
use tch::{nn, Device};
let config_path = Path::new("path/to/config.json");
let device = Device::Cpu;
let p = nn::VarStore::new(device);
let config = T5Config::from_file(config_path);
let t5 = T5ForConditionalGeneration::new(&p.root() / "t5", &config);sourcepub fn forward_t(
&self,
input_ids: Option<&Tensor>,
attention_mask: Option<&Tensor>,
encoder_outputs: Option<&Tensor>,
decoder_input_ids: Option<&Tensor>,
decoder_attention_mask: Option<&Tensor>,
input_embeds: Option<&Tensor>,
decoder_input_embeds: Option<&Tensor>,
old_layer_states: Option<Vec<(Option<LayerState>, Option<LayerState>)>>,
train: bool
) -> T5ModelOutput
pub fn forward_t( &self, input_ids: Option<&Tensor>, attention_mask: Option<&Tensor>, encoder_outputs: Option<&Tensor>, decoder_input_ids: Option<&Tensor>, decoder_attention_mask: Option<&Tensor>, input_embeds: Option<&Tensor>, decoder_input_embeds: Option<&Tensor>, old_layer_states: Option<Vec<(Option<LayerState>, Option<LayerState>)>>, train: bool ) -> T5ModelOutput
Forward pass through the model
Arguments
input_ids- Optional input tensor of shape (batch size, source_sequence_length). This orinput_embedsmust be provided.attention_mask- Optional attention mask of shape (batch size, source_sequence_length) for the encoder positions. Positions with a mask with value 0 will be masked.decoder_input_ids- Optional input tensor of shape (batch size, target_sequence_length). This ordecoder_input_embedsmust be provided.encoder_outputs- Optional tuple made of a tensor of shape (batch size, source_sequence_length, encoder_hidden_dim) and optional vectors of tensors of length num_encoder_layers with shape (batch size, source_sequence_length, hidden_size). These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.decoder_attention_mask- Optional attention mask of shape (batch size, target_sequence_length) for the decoder positions. Positions with a mask with value 0 will be masked.input_embeds- Optional input tensor of shape (batch size, source_sequence_length, embeddings dimension). This orinput_idsmust be provided.decoder_input_embeds- Optional input tensor of shape (batch size, target_sequence_length, embeddings dimension). This ordecoder_input_idsmust be provided.old_layer_states- Optional vector of lengthnum_layerscontaining tuples of optionalLayerStatescontaining the last calculated key and value pairs for the decoder. This avoids recomputing attention weights at past positions and speeds up decoding.train- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
Returns
T5ModelOutputcontaining:decoder_output-Tensorof shape (batch size, target_sequence_length, vocab_size) representing the logits for each sequence position and vocabulary itemencoder_hidden_states-Tensorof shape (batch size, source_sequence_length, hidden_size) representing the activations of the last encoder hidden statecache-Option<Vec<(Option<Vec<LayerState, LayerState>>)>>of length n_layer containing the encoder padding mask and past keys and values for both the self attention and the encoder cross attention of each layer of the decoder.all_encoder_hidden_states-Option<Vec<Tensor>>of length num_encoder_layers with shape (batch size, source_sequence_length, hidden_size)all_encoder_attentions-Option<Vec<Tensor>>of length num_encoder_layers with shape (batch size, source_sequence_length, hidden_size)all_decoder_hidden_states-Option<Vec<Tensor>>of length num_decoder_layers with shape (batch size, target_sequence_length, hidden_size)all_decoder_attentions-Option<Vec<Tensor>>of length num_decoder_layers with shape (batch size, target_sequence_length, hidden_size)
Example
use rust_bert::t5::{T5Config, T5ForConditionalGeneration};
let (batch_size, source_sequence_length, target_sequence_length) = (64, 128, 56);
let input_tensor = Tensor::rand(&[batch_size, source_sequence_length], (Int64, device));
let target_tensor = Tensor::rand(&[batch_size, target_sequence_length], (Int64, device));
let encoder_attention_mask =
Tensor::ones(&[batch_size, source_sequence_length], (Int64, device));
let decoder_attention_mask =
Tensor::ones(&[batch_size, source_sequence_length], (Int64, device));
let model_output = no_grad(|| {
t5_model.forward_t(
Some(&input_tensor),
Some(&encoder_attention_mask),
None,
Some(&target_tensor),
Some(&decoder_attention_mask),
None,
None,
None,
false,
)
});pub fn encode( &self, input_ids: &Tensor, attention_mask: Option<&Tensor> ) -> Tensor
Auto Trait Implementations§
impl RefUnwindSafe for T5ForConditionalGeneration
impl Send for T5ForConditionalGeneration
impl !Sync for T5ForConditionalGeneration
impl Unpin for T5ForConditionalGeneration
impl UnwindSafe for T5ForConditionalGeneration
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more