pub struct RobertaForMultipleChoice { /* private fields */ }
Expand description

RoBERTa for multiple choices

Multiple choices model using a RoBERTa base model and a linear classifier. Input should be in the form <s> Context </s> Possible choice </s>. The choice is made along the batch axis, assuming all elements of the batch are alternatives to be chosen from for a given context. It is made of the following blocks:

  • roberta: Base RoBERTa model
  • classifier: Linear layer for multiple choices

Implementations§

Build a new RobertaForMultipleChoice

Arguments
  • p - Variable store path for the root of the RobertaForMaskedLM model
  • config - RobertaConfig object defining the model architecture and vocab size
Example
use rust_bert::roberta::{RobertaConfig, RobertaForMultipleChoice};
use rust_bert::Config;
use std::path::Path;
use tch::{nn, Device};

let config_path = Path::new("path/to/config.json");
let device = Device::Cpu;
let p = nn::VarStore::new(device);
let config = RobertaConfig::from_file(config_path);
let roberta = RobertaForMultipleChoice::new(&p.root() / "roberta", &config);

Forward pass through the model

Arguments
  • input_ids - Input tensor of shape (batch size, sequence_length).
  • mask - Optional mask of shape (batch size, sequence_length). Masked position have value 0, non-masked value 1. If None set to 1
  • token_type_ids -Optional segment id of shape (batch size, sequence_length). Convention is value of 0 for the first sentence (incl. ) and 1 for the second sentence. If None set to 0.
  • position_ids - Optional position ids of shape (batch size, sequence_length). If None, will be incremented from 0.
  • train - boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
Returns
  • RobertaSequenceClassificationOutput containing:
    • logits - Tensor of shape (1, batch size) containing the logits for each of the alternatives given
    • all_hidden_states - Option<Vec<Tensor>> of length num_hidden_layers with shape (batch size, sequence_length, hidden_size)
    • all_attentions - Option<Vec<Tensor>> of length num_hidden_layers with shape (batch size, sequence_length, hidden_size)
Example
use rust_bert::roberta::RobertaForMultipleChoice;
let (num_choices, sequence_length) = (3, 128);
let input_tensor = Tensor::rand(&[num_choices, sequence_length], (Int64, device));
let mask = Tensor::zeros(&[num_choices, sequence_length], (Int64, device));
let token_type_ids = Tensor::zeros(&[num_choices, sequence_length], (Int64, device));
let position_ids = Tensor::arange(sequence_length, (Int64, device))
    .expand(&[num_choices, sequence_length], true);

let model_output = no_grad(|| {
    roberta_model.forward_t(
        &input_tensor,
        Some(&mask),
        Some(&token_type_ids),
        Some(&position_ids),
        false,
    )
});

Auto Trait Implementations§

Blanket Implementations§

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more

Returns the argument unchanged.

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Instruments this type with the current Span, returning an Instrumented wrapper. Read more

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

The alignment of pointer.
The type for initializers.
Initializes a with the given initializer. Read more
Dereferences the given pointer. Read more
Mutably dereferences the given pointer. Read more
Drops the object pointed to by the given pointer. Read more
Should always be Self
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.
Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more