Struct rust_bert::reformer::ReformerModelWithLMHead
source · pub struct ReformerModelWithLMHead { /* private fields */ }Expand description
Reformer Model for text generation
Reformer model with a vocabulary decoding head It is made of the following blocks:
reformer:ReformerModelBase Reformer modellm_head:ReformerLMHeadprojecting hidden states to the vocabulary dimension
Implementations§
source§impl ReformerModelWithLMHead
impl ReformerModelWithLMHead
sourcepub fn new<'p, P>(
p: P,
config: &ReformerConfig
) -> Result<ReformerModelWithLMHead, RustBertError>where
P: Borrow<Path<'p>>,
pub fn new<'p, P>(
p: P,
config: &ReformerConfig
) -> Result<ReformerModelWithLMHead, RustBertError>where
P: Borrow<Path<'p>>,
Build a new ReformerModelWithLMHead
Arguments
p- Variable store path for the root of the BART modelconfig-ReformerConfigobject defining the model architecture
Example
use rust_bert::reformer::{ReformerConfig, ReformerModelWithLMHead};
use rust_bert::Config;
use std::path::Path;
use tch::{nn, Device};
let config_path = Path::new("path/to/config.json");
let device = Device::Cpu;
let p = nn::VarStore::new(device);
let config = ReformerConfig::from_file(config_path);
let reformer_model: ReformerModelWithLMHead =
ReformerModelWithLMHead::new(&p.root(), &config).unwrap();sourcepub fn forward_t(
&self,
input_ids: Option<&Tensor>,
position_ids: Option<&Tensor>,
input_embeds: Option<&Tensor>,
attention_mask: Option<&Tensor>,
num_hashes: Option<i64>,
old_layer_states: Option<Vec<Option<LayerState>>>,
train: bool
) -> Result<ReformerLMModelOutput, RustBertError>
pub fn forward_t(
&self,
input_ids: Option<&Tensor>,
position_ids: Option<&Tensor>,
input_embeds: Option<&Tensor>,
attention_mask: Option<&Tensor>,
num_hashes: Option<i64>,
old_layer_states: Option<Vec<Option<LayerState>>>,
train: bool
) -> Result<ReformerLMModelOutput, RustBertError>
Forward pass through the model
Arguments
input_ids- Optional input tensor of shape (batch size, sequence_length). Must be provided when no pre-computed embeddings are given.position_ids- Optional input tensor of shape (batch size, sequence_length). If not provided will be calculated on the fly starting from position 0.input_embeds- Optional input tensor of shape (batch size, sequence_length, embeddings_dim). Must be provided when no input ids are given.attention_mask- Optional attention mask of shape (batch size, sequence_length). Positions with a mask with value 0 will be masked.num_hashes- Optional specification of the number of hashes to use. If not provided will use the value provided in the model configuration.old_layer_states- Optional cached input (Option<Vec<Option<LayerState>>>) containing previous values for the cached states and buckets.train- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
Returns
ReformerLMModelOutputcontaining:logits-Tensorof shape (batch size, sequence_length, vocab_size) representing the logits for each vocabulary itemall_hidden_states-Option<Vec<Tensor>>of length n_layers with shape (batch size, sequence_length, hidden_size)all_attentions-Option<Vec<Tensor>>of length n_layers with shape (batch size, sequence_length, hidden_size)cache-Option<Vec<Option<LayerState>>>of length n_layer containing values for the states and buckets for future use.
Example
use rust_bert::reformer::{ReformerConfig, ReformerModelWithLMHead};
let (batch_size, sequence_length) = (64, 128);
let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device));
let input_positions = Tensor::arange(sequence_length, (Kind::Int64, device)).unsqueeze(0).expand(&[batch_size, sequence_length], true);
let attention_mask = Tensor::ones(&[batch_size, sequence_length], (Int64, device));
let model_output = no_grad(|| {
reformer_model.forward_t(
Some(&input_tensor),
Some(&input_positions),
None,
Some(&attention_mask),
Some(4),
None,
false,
)
});Trait Implementations§
source§impl LMHeadModel for ReformerModelWithLMHead
impl LMHeadModel for ReformerModelWithLMHead
source§fn forward_t(
&self,
input_ids: Option<&Tensor>,
cache: Cache,
attention_mask: Option<&Tensor>,
_token_type_ids: Option<&Tensor>,
_position_ids: Option<&Tensor>,
_input_embeds: Option<&Tensor>,
_encoder_outputs: Option<&Tensor>,
_decoder_input_ids: Option<&Tensor>,
train: bool
) -> Result<LMModelOutput, RustBertError>
fn forward_t(
&self,
input_ids: Option<&Tensor>,
cache: Cache,
attention_mask: Option<&Tensor>,
_token_type_ids: Option<&Tensor>,
_position_ids: Option<&Tensor>,
_input_embeds: Option<&Tensor>,
_encoder_outputs: Option<&Tensor>,
_decoder_input_ids: Option<&Tensor>,
train: bool
) -> Result<LMModelOutput, RustBertError>
Forward pass through the model. Example provided for GPT2. Read more
source§impl LanguageGenerator<ReformerModelWithLMHead, ReformerVocab, ReformerTokenizer> for ReformerGenerator
impl LanguageGenerator<ReformerModelWithLMHead, ReformerVocab, ReformerTokenizer> for ReformerGenerator
source§fn generate<S>(
&self,
prompt_texts: Option<&[S]>,
generate_options: Option<GenerateOptions<'_>>
) -> Vec<GeneratedTextOutput> ⓘwhere
S: AsRef<str> + Sync,
fn generate<S>(
&self,
prompt_texts: Option<&[S]>,
generate_options: Option<GenerateOptions<'_>>
) -> Vec<GeneratedTextOutput> ⓘwhere
S: AsRef<str> + Sync,
Generate text based on a vector of promp texts. Read more
source§fn generate_indices<S>(
&self,
prompt_texts: Option<&[S]>,
generate_options: Option<GenerateOptions<'_>>
) -> Vec<GeneratedIndicesOutput> ⓘwhere
S: AsRef<str> + Sync,
fn generate_indices<S>(
&self,
prompt_texts: Option<&[S]>,
generate_options: Option<GenerateOptions<'_>>
) -> Vec<GeneratedIndicesOutput> ⓘwhere
S: AsRef<str> + Sync,
Generate token indices without decoding (useful for token-level operations before returning final text or as validation step during training). Read more
source§fn generate_from_ids_and_past(
&self,
input_ids: Tensor,
attention_mask: Option<Tensor>,
generate_options: Option<GenerateOptions<'_>>
) -> Vec<GeneratedIndicesOutput> ⓘ
fn generate_from_ids_and_past(
&self,
input_ids: Tensor,
attention_mask: Option<Tensor>,
generate_options: Option<GenerateOptions<'_>>
) -> Vec<GeneratedIndicesOutput> ⓘ
Generate token indices given a list of indices (useful when the input has been pre-tokenized).
Returns a list of output tokens that need to be decoded using a tokenizer. Read more
source§fn get_tokenizer(&self) -> &TokenizerOption
fn get_tokenizer(&self) -> &TokenizerOption
Returns a reference to the text generator’s tokenizer Read more