pub struct GPT2LMHeadModel { /* private fields */ }
Expand description

GPT2 Language Modeling head

GPT2 model with a decoding head (linear layer without bias). The weights of the linear layer are tied to the word embeddings It is made of the following blocks:

  • transformer: Base Gpt2Model

Implementations§

Build a new GPT2LMHeadModel

Arguments
  • p - Variable store path for the root of the GPT2 model
  • config - Gpt2Config object defining the model architecture
Example
use rust_bert::gpt2::{GPT2LMHeadModel, Gpt2Config};
use rust_bert::Config;
use std::path::Path;
use tch::{nn, Device};

let config_path = Path::new("path/to/config.json");
let device = Device::Cpu;
let p = nn::VarStore::new(device);
let config = Gpt2Config::from_file(config_path);
let gpt2: GPT2LMHeadModel = GPT2LMHeadModel::new(&p.root() / "gpt2", &config);

Trait Implementations§

Forward pass through the model

Arguments
  • input_ids - Optional input tensor of shape (batch size, sequence_length). If None, pre-computed embeddings must be provided (see input_embeds)
  • layer_past - Optional vector of size n_layer containing the past keys and values of each layer of shape (2, batch size, number of heads, past_sequence_length, hidden size per head). When provided, these are concatenated with the current input keys and values.
  • attention_mask - Optional mask of shape (batch size, sequence_length). Masked position have value 0, non-masked value 1. If None set to 1
  • input_embeds - Optional pre-computed input embeddings of shape (batch size, sequence_length, hidden_size). If None, input ids must be provided (see input_ids)
  • token_type_ids - Optional token type ids used to indicate the portion of the input the token belongs to. If not None, token type embeddings will be added to the token and position embeddings.
  • position_ids - Optional position ids of shape (batch size, sequence_length). If None, will be incremented starting from the length of the past input.
  • _encoder_outputs - Optional tensor of shape (batch size, source_sequence_length, encoder_hidden_dim). Unused for GPT2
  • _decoder_input_ids - Optional tensor of shape (batch size, target_sequence_length). Unused for GPT2
  • train - boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
Returns
  • LMModelOutput containing:
    • lm_logits - Tensor of shape (batch size, sequence_length, vocab_size) representing the logits for each vocab item and position
    • cache - Gpt2Cache made of Option<Vec<Tensor>> of length n_layer containing the past keys and values of each layer of shape (2, batch size, number of heads, past_sequence_length, hidden size per head)
Example
use rust_bert::gpt2::{GPT2LMHeadModel, Gpt2Config};
use rust_bert::pipelines::generation_utils::{Cache, LMHeadModel};
let (batch_size, sequence_length, past_sequence_length) = (64, 128, 56);
let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device));
let mut past: Vec<Tensor> = Vec::with_capacity(config.n_layer as usize);
for _ in 0..config.n_layer as usize {
    past.push(Tensor::rand(
        &[
            2,
            batch_size,
            config.n_head,
            past_sequence_length,
            config.n_embd / config.n_head,
        ],
        (Double, device),
    ))
}
let attention_mask = Tensor::zeros(&[batch_size, sequence_length], (Int64, device));
let token_type_ids = Tensor::ones(&[batch_size, sequence_length], (Int64, device));
let position_ids = Tensor::arange(sequence_length, (Int64, device))
    .expand(&[batch_size, sequence_length], true);

let model_output = no_grad(|| {
    gpt2_model
        .forward_t(
            Some(&input_tensor),
            Cache::GPT2Cache(Some(past)),
            Some(&attention_mask),
            Some(&token_type_ids),
            Some(&position_ids),
            None,
            None,
            None,
            false,
        )
        .unwrap()
});
Generate text based on a vector of promp texts. Read more
Generate token indices without decoding (useful for token-level operations before returning final text or as validation step during training). Read more
Generate token indices given a list of indices (useful when the input has been pre-tokenized). Returns a list of output tokens that need to be decoded using a tokenizer. Read more
Returns a reference to the text generator’s tokenizer Read more

Auto Trait Implementations§

Blanket Implementations§

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more

Returns the argument unchanged.

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Instruments this type with the current Span, returning an Instrumented wrapper. Read more

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

The alignment of pointer.
The type for initializers.
Initializes a with the given initializer. Read more
Dereferences the given pointer. Read more
Mutably dereferences the given pointer. Read more
Drops the object pointed to by the given pointer. Read more
Should always be Self
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.
Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more