Struct rust_bert::xlnet::XLNetLMHeadModel
source · [−]pub struct XLNetLMHeadModel { /* private fields */ }Expand description
XLNetLMHeadModel
XLNet model with a language model head for language generation tasks It is made of the following blocks:
base_model:XLNetModellm_head: Linear language modeling head, projecting the hidden state logits to the vocabulary space
Implementations
sourceimpl XLNetLMHeadModel
impl XLNetLMHeadModel
sourcepub fn new<'p, P>(p: P, config: &XLNetConfig) -> XLNetLMHeadModel where
P: Borrow<Path<'p>>,
pub fn new<'p, P>(p: P, config: &XLNetConfig) -> XLNetLMHeadModel where
P: Borrow<Path<'p>>,
Build a new XLNetLMHeadModel
Arguments
p- Variable store path for the root of the XLNet modelconfig-XLNetConfigobject defining the model architecture
Example
use rust_bert::xlnet::{XLNetConfig, XLNetLMHeadModel};
use rust_bert::Config;
use std::path::Path;
use tch::{nn, Device};
let config_path = Path::new("path/to/config.json");
let device = Device::Cpu;
let p = nn::VarStore::new(device);
let config = XLNetConfig::from_file(config_path);
let xlnet_model = XLNetLMHeadModel::new(&p.root(), &config);sourcepub fn forward_t(
&self,
input_ids: Option<&Tensor>,
attention_mask: Option<&Tensor>,
old_layer_states: Option<Vec<Option<LayerState>>>,
perm_mask: Option<&Tensor>,
target_mapping: Option<&Tensor>,
token_type_ids: Option<&Tensor>,
input_embeds: Option<&Tensor>,
train: bool
) -> Result<LMModelOutput, RustBertError>
pub fn forward_t(
&self,
input_ids: Option<&Tensor>,
attention_mask: Option<&Tensor>,
old_layer_states: Option<Vec<Option<LayerState>>>,
perm_mask: Option<&Tensor>,
target_mapping: Option<&Tensor>,
token_type_ids: Option<&Tensor>,
input_embeds: Option<&Tensor>,
train: bool
) -> Result<LMModelOutput, RustBertError>
Forward pass through the model
Arguments
input_ids- Optional input tensor of shape (batch size, sequence_length). This orinput_embedsmust be provided.attention_mask- Optional attention mask of shape (batch size, sequence_length) for the encoder positions. Positions with a mask with value 0 will be masked.perm_mask- Optional tensor of shape (batch size, sequence_length, sequence_length). Mask to indicate the attention pattern for each input token (only used for pre-training over permutations, rather than simple token masking).target_mapping- Optional tensor of shape (batch size, num_tokens, sequence_length) indicating the position of the masked words to predict.token_type_ids- Optional tensor (batch size, sequence_length) indicating the sentence ID of the token (0: first sentence, 1: second sentence).input_embeds- Optional input tensor of shape (batch size, sequence_length, embeddings dimension). This orinput_idsmust be provided.old_layer_states- Optional vector of lengthnum_layerscontaining optionalLayerStatescontaining the last calculated content for the attention layers. This avoids recomputing attention weights at past positions and speeds up decoding.train- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
Returns
LMModelOutputcontaining:lm_logits-Tensorof shape (batch size, sequence_length, vocab_size) representing the logits for each vocab item and positioncache-XLNetCachemade ofOption<Vec<Option<LayerState>>>of length n_layers and shape (past_sequence_length, batch size, hidden_size) containing the previous contentencoder_hidden_states- Noneall_hidden_states-Option<Vec<Tensor>>of length n_layers with shape (batch size, sequence_length, hidden_size)all_attentions-Option<Vec<Tensor>>of length n_layers with shape (batch size, sequence_length, hidden_size)
Example
use rust_bert::xlnet::{XLNetConfig, XLNetLMHeadModel};
let (batch_size, sequence_length) = (64, 128);
let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device));
let attention_mask = Tensor::ones(&[batch_size, sequence_length], (Int64, device));
let target_tensor = Tensor::ones(&[batch_size, sequence_length], (Int64, device));
let target_mapping = Tensor::zeros(&[64, 1, 128], (Kind::Float, device));
let _ = target_mapping.narrow(2, 3, 1).fill_(1.0);
let model_output = no_grad(|| {
xlnet_model.forward_t(
Some(&input_tensor),
Some(&attention_mask),
None,
Some(&target_mapping),
None,
None,
None,
false,
)
});Trait Implementations
sourceimpl LMHeadModel for XLNetLMHeadModel
impl LMHeadModel for XLNetLMHeadModel
sourcefn forward_t(
&self,
input_ids: Option<&Tensor>,
layer_past: Cache,
attention_mask: Option<&Tensor>,
_token_type_ids: Option<&Tensor>,
_position_ids: Option<&Tensor>,
_input_embeds: Option<&Tensor>,
_encoder_outputs: Option<&Tensor>,
decoder_input_ids: Option<&Tensor>,
train: bool
) -> Result<LMModelOutput, RustBertError>
fn forward_t(
&self,
input_ids: Option<&Tensor>,
layer_past: Cache,
attention_mask: Option<&Tensor>,
_token_type_ids: Option<&Tensor>,
_position_ids: Option<&Tensor>,
_input_embeds: Option<&Tensor>,
_encoder_outputs: Option<&Tensor>,
decoder_input_ids: Option<&Tensor>,
train: bool
) -> Result<LMModelOutput, RustBertError>
Forward pass through the model
Arguments
input_ids- Optional input tensor of shape (batch size, sequence_length). This orinput_embedsmust be provided.attention_mask- Optional attention mask of shape (batch size, sequence_length) for the encoder positions. Positions with a mask with value 0 will be masked.perm_mask- Optional tensor of shape (batch size, sequence_length, sequence_length). Mask to indicate the attention pattern for each input token (only used for pre-training over permutations, rather than simple token masking).target_mapping- Optional tensor of shape (batch size, num_tokens, sequence_length) indicating the position of the masked words to predict.token_type_ids- Optional tensor (batch size, sequence_length) indicating the sentence ID of the token (0: first sentence, 1: second sentence).input_embeds- Optional input tensor of shape (batch size, sequence_length, embeddings dimension). This orinput_idsmust be provided.old_layer_states- Optional vector of lengthnum_layerscontaining optionalLayerStatescontaining the last calculated content for the attention layers. This avoids recomputing attention weights at past positions and speeds up decoding.train- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
Returns
LMModelOutputcontaining:lm_logits-Tensorof shape (batch size, sequence_length, vocab_size) representing the logits for each vocab item and positioncache-XLNetCachemade ofOption<Vec<Option<LayerState>>>of length n_layers and shape (past_sequence_length, batch size, hidden_size) containing the previous content
Example
use rust_bert::xlnet::{XLNetConfig, XLNetLMHeadModel};
let (batch_size, sequence_length) = (64, 128);
let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device));
let attention_mask = Tensor::ones(&[batch_size, sequence_length], (Int64, device));
let target_tensor = Tensor::ones(&[batch_size, sequence_length], (Int64, device));
let target_mapping = Tensor::zeros(&[64, 1, 128], (Kind::Float, device));
let _ = target_mapping.narrow(2, 3, 1).fill_(1.0);
let model_output = no_grad(|| {
xlnet_model.forward_t(
Some(&input_tensor),
Some(&attention_mask),
None,
Some(&target_mapping),
None,
None,
None,
false,
)
});sourceimpl LanguageGenerator<XLNetLMHeadModel, XLNetVocab, XLNetTokenizer> for XLNetGenerator
impl LanguageGenerator<XLNetLMHeadModel, XLNetVocab, XLNetTokenizer> for XLNetGenerator
sourcefn generate<S>(
&self,
prompt_texts: Option<&[S]>,
generate_options: Option<GenerateOptions<'_>>
) -> Vec<GeneratedTextOutput>ⓘNotable traits for Vec<u8, A>impl<A> Write for Vec<u8, A> where
A: Allocator, where
S: AsRef<str> + Sync,
fn generate<S>(
&self,
prompt_texts: Option<&[S]>,
generate_options: Option<GenerateOptions<'_>>
) -> Vec<GeneratedTextOutput>ⓘNotable traits for Vec<u8, A>impl<A> Write for Vec<u8, A> where
A: Allocator, where
S: AsRef<str> + Sync,
A: Allocator,
Generate text based on a vector of promp texts. Read more
sourcefn generate_indices<S>(
&self,
prompt_texts: Option<&[S]>,
generate_options: Option<GenerateOptions<'_>>
) -> Vec<GeneratedIndicesOutput>ⓘNotable traits for Vec<u8, A>impl<A> Write for Vec<u8, A> where
A: Allocator, where
S: AsRef<str> + Sync,
fn generate_indices<S>(
&self,
prompt_texts: Option<&[S]>,
generate_options: Option<GenerateOptions<'_>>
) -> Vec<GeneratedIndicesOutput>ⓘNotable traits for Vec<u8, A>impl<A> Write for Vec<u8, A> where
A: Allocator, where
S: AsRef<str> + Sync,
A: Allocator,
Generate token indices without decoding (useful for token-level operations before returning final text or as validation step during training). Read more
sourcefn generate_from_ids_and_past(
&self,
input_ids: Tensor,
attention_mask: Option<Tensor>,
generate_options: Option<GenerateOptions<'_>>
) -> Vec<GeneratedIndicesOutput>ⓘNotable traits for Vec<u8, A>impl<A> Write for Vec<u8, A> where
A: Allocator,
fn generate_from_ids_and_past(
&self,
input_ids: Tensor,
attention_mask: Option<Tensor>,
generate_options: Option<GenerateOptions<'_>>
) -> Vec<GeneratedIndicesOutput>ⓘNotable traits for Vec<u8, A>impl<A> Write for Vec<u8, A> where
A: Allocator,
A: Allocator,
Generate token indices given a list of indices (useful when the input has been pre-tokenized). Returns a list of output tokens that need to be decoded using a tokenizer. Read more
sourcefn get_tokenizer(&self) -> &TokenizerOption
fn get_tokenizer(&self) -> &TokenizerOption
Returns a reference to the text generator’s tokenizer Read more
fn half(&mut self)
fn float(&mut self)
fn set_device(&mut self, device: Device)
Auto Trait Implementations
impl RefUnwindSafe for XLNetLMHeadModel
impl Send for XLNetLMHeadModel
impl !Sync for XLNetLMHeadModel
impl Unpin for XLNetLMHeadModel
impl UnwindSafe for XLNetLMHeadModel
Blanket Implementations
sourceimpl<T> BorrowMut<T> for T where
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
const: unstable · sourcefn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
sourceimpl<T> Instrument for T
impl<T> Instrument for T
sourcefn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Instruments this type with the provided Span, returning an
Instrumented wrapper. Read more