pub struct T5Model { /* private fields */ }
Expand description

T5 Base model

Base architecture for T5 model. Usually complemented with a task-specific head, such as a language model head. It is made of the following blocks:

  • encoder: T5Stack (transformer) made of a vector of encoding layers
  • decoder: T5Stack (transformer) made of a vector of decoding layers with self attention and encoder cross-attention. caching is implemented for the decoder to avoid recalculating static states (encoder key/values and previously calculated decoder key/values)
  • embeddings: nn::Embedding Shared embeddings for the encoder and decoder.

Implementations

Build a new T5Model

Arguments
  • p - Variable store path for the root of the BART model
  • config - T5Config object defining the model architecture
  • output_attention - flag indicating if the model should output the attention weights of intermediate layers
  • output_hidden_states - flag indicating if the model should output the hidden states weights of intermediate layers
Example
use rust_bert::t5::{T5Config, T5Model};
use rust_bert::Config;
use std::path::Path;
use tch::{nn, Device};

let config_path = Path::new("path/to/config.json");
let device = Device::Cpu;
let p = nn::VarStore::new(device);
let config = T5Config::from_file(config_path);
let output_attentions = true;
let output_hidden_states = true;
let t5: T5Model = T5Model::new(
    &p.root() / "t5",
    &config,
    output_attentions,
    output_hidden_states,
);

Forward pass through the model

Arguments
  • input_ids - Optional input tensor of shape (batch size, source_sequence_length). This or input_embeds must be provided.
  • attention_mask - Optional attention mask of shape (batch size, source_sequence_length) for the encoder positions. Positions with a mask with value 0 will be masked.
  • decoder_input_ids - Optional input tensor of shape (batch size, target_sequence_length). This or decoder_input_embeds must be provided.
  • encoder_outputs - Optional tuple made of a tensor of shape (batch size, source_sequence_length, encoder_hidden_dim) and optional vectors of tensors of length num_encoder_layers with shape (batch size, source_sequence_length, hidden_size). These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.
  • decoder_attention_mask - Optional attention mask of shape (batch size, target_sequence_length) for the decoder positions. Positions with a mask with value 0 will be masked.
  • input_embeds - Optional input tensor of shape (batch size, source_sequence_length, embeddings dimension). This or input_ids must be provided.
  • decoder_input_embeds - Optional input tensor of shape (batch size, target_sequence_length, embeddings dimension). This or decoder_input_ids must be provided.
  • old_layer_states - Optional vector of length num_layers containing tuples of optional LayerStates containing the last calculated key and value pairs for the decoder. This avoids recomputing attention weights at past positions and speeds up decoding.
  • train - boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
Returns
  • T5ModelOutput containing:
    • decoder_output - Tensor of shape (batch size, target_sequence_length, hidden_size) representing the activations of the last decoder hidden state
    • encoder_hidden_states - Tensor of shape (batch size, source_sequence_length, hidden_size) representing the activations of the last encoder hidden state
    • cache - Option<Vec<(Option<Vec<LayerState, LayerState>>)>> of length n_layer containing the encoder padding mask and past keys and values for both the self attention and the encoder cross attention of each layer of the decoder.
    • all_encoder_hidden_states - Option<Vec<Tensor>> of length num_encoder_layers with shape (batch size, source_sequence_length, hidden_size)
    • all_encoder_attentions - Option<Vec<Tensor>> of length num_encoder_layers with shape (batch size, source_sequence_length, hidden_size)
    • all_decoder_hidden_states - Option<Vec<Tensor>> of length num_decoder_layers with shape (batch size, target_sequence_length, hidden_size)
    • all_decoder_attentions - Option<Vec<Tensor>> of length num_decoder_layers with shape (batch size, target_sequence_length, hidden_size)
Example
use rust_bert::t5::{T5Config, T5Model};
let (batch_size, source_sequence_length, target_sequence_length) = (64, 128, 56);
let input_tensor = Tensor::rand(&[batch_size, source_sequence_length], (Int64, device));
let target_tensor = Tensor::rand(&[batch_size, target_sequence_length], (Int64, device));
let encoder_attention_mask =
    Tensor::ones(&[batch_size, source_sequence_length], (Int64, device));
let decoder_attention_mask =
    Tensor::ones(&[batch_size, source_sequence_length], (Int64, device));

let model_output = no_grad(|| {
    t5_model.forward_t(
        Some(&input_tensor),
        Some(&encoder_attention_mask),
        None,
        Some(&target_tensor),
        Some(&decoder_attention_mask),
        None,
        None,
        None,
        false,
    )
});

Auto Trait Implementations

Blanket Implementations

Gets the TypeId of self. Read more

Immutably borrows from an owned value. Read more

Mutably borrows from an owned value. Read more

Returns the argument unchanged.

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more

Instruments this type with the current Span, returning an Instrumented wrapper. Read more

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

The alignment of pointer.

The type for initializers.

Initializes a with the given initializer. Read more

Dereferences the given pointer. Read more

Mutably dereferences the given pointer. Read more

Drops the object pointed to by the given pointer. Read more

Should always be Self

The type returned in the event of a conversion error.

Performs the conversion.

The type returned in the event of a conversion error.

Performs the conversion.

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more