Struct rust_bert::t5::T5ForConditionalGeneration
source · [−]pub struct T5ForConditionalGeneration { /* private fields */ }Expand description
T5 Model for conditional generation
T5 model with a vocabulary decoding head It is made of the following blocks:
base_model:T5ModelBase T5 modelmodel_dim:f64representation of the model dimension for scaling of the generated logits
Implementations
sourceimpl T5ForConditionalGeneration
impl T5ForConditionalGeneration
sourcepub fn new<'p, P>(
p: P,
config: &T5Config,
output_attentions: bool,
output_hidden_states: bool
) -> T5ForConditionalGeneration where
P: Borrow<Path<'p>>,
pub fn new<'p, P>(
p: P,
config: &T5Config,
output_attentions: bool,
output_hidden_states: bool
) -> T5ForConditionalGeneration where
P: Borrow<Path<'p>>,
Build a new T5ForConditionalGeneration
Arguments
p- Variable store path for the root of the BART modelconfig-T5Configobject defining the model architectureoutput_attention- flag indicating if the model should output the attention weights of intermediate layersoutput_hidden_states- flag indicating if the model should output the hidden states weights of intermediate layers
Example
use rust_bert::t5::{T5Config, T5ForConditionalGeneration};
use rust_bert::Config;
use std::path::Path;
use tch::{nn, Device};
let config_path = Path::new("path/to/config.json");
let device = Device::Cpu;
let p = nn::VarStore::new(device);
let config = T5Config::from_file(config_path);
let output_attentions = true;
let output_hidden_states = true;
let t5 = T5ForConditionalGeneration::new(
&p.root() / "t5",
&config,
output_attentions,
output_hidden_states,
);sourcepub fn forward_t(
&self,
input_ids: Option<&Tensor>,
attention_mask: Option<&Tensor>,
encoder_outputs: Option<&Tensor>,
decoder_input_ids: Option<&Tensor>,
decoder_attention_mask: Option<&Tensor>,
input_embeds: Option<&Tensor>,
decoder_input_embeds: Option<&Tensor>,
old_layer_states: Option<Vec<(Option<LayerState>, Option<LayerState>)>>,
train: bool
) -> T5ModelOutput
pub fn forward_t(
&self,
input_ids: Option<&Tensor>,
attention_mask: Option<&Tensor>,
encoder_outputs: Option<&Tensor>,
decoder_input_ids: Option<&Tensor>,
decoder_attention_mask: Option<&Tensor>,
input_embeds: Option<&Tensor>,
decoder_input_embeds: Option<&Tensor>,
old_layer_states: Option<Vec<(Option<LayerState>, Option<LayerState>)>>,
train: bool
) -> T5ModelOutput
Forward pass through the model
Arguments
input_ids- Optional input tensor of shape (batch size, source_sequence_length). This orinput_embedsmust be provided.attention_mask- Optional attention mask of shape (batch size, source_sequence_length) for the encoder positions. Positions with a mask with value 0 will be masked.decoder_input_ids- Optional input tensor of shape (batch size, target_sequence_length). This ordecoder_input_embedsmust be provided.encoder_outputs- Optional tuple made of a tensor of shape (batch size, source_sequence_length, encoder_hidden_dim) and optional vectors of tensors of length num_encoder_layers with shape (batch size, source_sequence_length, hidden_size). These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.decoder_attention_mask- Optional attention mask of shape (batch size, target_sequence_length) for the decoder positions. Positions with a mask with value 0 will be masked.input_embeds- Optional input tensor of shape (batch size, source_sequence_length, embeddings dimension). This orinput_idsmust be provided.decoder_input_embeds- Optional input tensor of shape (batch size, target_sequence_length, embeddings dimension). This ordecoder_input_idsmust be provided.old_layer_states- Optional vector of lengthnum_layerscontaining tuples of optionalLayerStatescontaining the last calculated key and value pairs for the decoder. This avoids recomputing attention weights at past positions and speeds up decoding.train- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
Returns
T5ModelOutputcontaining:decoder_output-Tensorof shape (batch size, target_sequence_length, vocab_size) representing the logits for each sequence position and vocabulary itemencoder_hidden_states-Tensorof shape (batch size, source_sequence_length, hidden_size) representing the activations of the last encoder hidden statecache-Option<Vec<(Option<Vec<LayerState, LayerState>>)>>of length n_layer containing the encoder padding mask and past keys and values for both the self attention and the encoder cross attention of each layer of the decoder.all_encoder_hidden_states-Option<Vec<Tensor>>of length num_encoder_layers with shape (batch size, source_sequence_length, hidden_size)all_encoder_attentions-Option<Vec<Tensor>>of length num_encoder_layers with shape (batch size, source_sequence_length, hidden_size)all_decoder_hidden_states-Option<Vec<Tensor>>of length num_decoder_layers with shape (batch size, target_sequence_length, hidden_size)all_decoder_attentions-Option<Vec<Tensor>>of length num_decoder_layers with shape (batch size, target_sequence_length, hidden_size)
Example
use rust_bert::t5::{T5Config, T5ForConditionalGeneration};
let (batch_size, source_sequence_length, target_sequence_length) = (64, 128, 56);
let input_tensor = Tensor::rand(&[batch_size, source_sequence_length], (Int64, device));
let target_tensor = Tensor::rand(&[batch_size, target_sequence_length], (Int64, device));
let encoder_attention_mask =
Tensor::ones(&[batch_size, source_sequence_length], (Int64, device));
let decoder_attention_mask =
Tensor::ones(&[batch_size, source_sequence_length], (Int64, device));
let model_output = no_grad(|| {
t5_model.forward_t(
Some(&input_tensor),
Some(&encoder_attention_mask),
None,
Some(&target_tensor),
Some(&decoder_attention_mask),
None,
None,
None,
false,
)
});pub fn encode(
&self,
input_ids: &Tensor,
attention_mask: Option<&Tensor>
) -> Tensor
Trait Implementations
sourceimpl LMHeadModel for T5ForConditionalGeneration
impl LMHeadModel for T5ForConditionalGeneration
sourcefn forward_t(
&self,
input_ids: Option<&Tensor>,
cache: Cache,
attention_mask: Option<&Tensor>,
_token_type_ids: Option<&Tensor>,
_position_ids: Option<&Tensor>,
_input_embeds: Option<&Tensor>,
encoder_outputs: Option<&Tensor>,
decoder_input_ids: Option<&Tensor>,
train: bool
) -> Result<LMModelOutput, RustBertError>
fn forward_t(
&self,
input_ids: Option<&Tensor>,
cache: Cache,
attention_mask: Option<&Tensor>,
_token_type_ids: Option<&Tensor>,
_position_ids: Option<&Tensor>,
_input_embeds: Option<&Tensor>,
encoder_outputs: Option<&Tensor>,
decoder_input_ids: Option<&Tensor>,
train: bool
) -> Result<LMModelOutput, RustBertError>
Forward pass through the model
Arguments
input_ids- Optional input tensor of shape (batch size, sequence_length). If None, pre-computed embeddings must be provided (seeinput_embeds)layer_past- Optional vector of lengthnum_layerscontaining tuples of optionalLayerStatescontaining the last calculated key and value pairs for the decoder. This avoids recomputing attention weights at past positions and speeds up decoding.attention_mask- Optional mask of shape (batch size, sequence_length). Masked position have value 0, non-masked value 1. If None set to 1input_embeds- Unused for T5token_type_ids- Unused for T5position_ids- Unused for T5encoder_outputs- Optional tensor of shape (batch size, source_sequence_length, hidden_size). When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.decoder_input_ids- Optional input tensor of shape (batch size, target_sequence_length).train- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
Returns
LMModelOutputcontaining:lm_logits-Tensorof shape (batch size, sequence_length, vocab_size) representing the logits for each vocab item and positioncache-T5Cachemade ofOption<Vec<(Option<Vec<&LayerState, &LayerState>>)>>of length n_layer containing the encoder past keys and values for both the self attention and the encoder cross attention of each layer of the decoder.
Example
use rust_bert::t5::{T5Config, T5ForConditionalGeneration};
let (batch_size, source_sequence_length, target_sequence_length) = (64, 128, 56);
let input_tensor = Tensor::rand(&[batch_size, source_sequence_length], (Int64, device));
let target_tensor = Tensor::rand(&[batch_size, target_sequence_length], (Int64, device));
let encoder_attention_mask =
Tensor::ones(&[batch_size, source_sequence_length], (Int64, device));
let decoder_attention_mask =
Tensor::ones(&[batch_size, source_sequence_length], (Int64, device));
let model_output = no_grad(|| {
t5_model.forward_t(
Some(&input_tensor),
Some(&encoder_attention_mask),
None,
Some(&target_tensor),
Some(&decoder_attention_mask),
None,
None,
None,
false,
)
});sourceimpl LanguageGenerator<T5ForConditionalGeneration, T5Vocab, T5Tokenizer> for T5Generator
impl LanguageGenerator<T5ForConditionalGeneration, T5Vocab, T5Tokenizer> for T5Generator
sourcefn generate<S>(
&self,
prompt_texts: Option<&[S]>,
generate_options: Option<GenerateOptions<'_>>
) -> Vec<GeneratedTextOutput>ⓘNotable traits for Vec<u8, A>impl<A> Write for Vec<u8, A> where
A: Allocator, where
S: AsRef<str> + Sync,
fn generate<S>(
&self,
prompt_texts: Option<&[S]>,
generate_options: Option<GenerateOptions<'_>>
) -> Vec<GeneratedTextOutput>ⓘNotable traits for Vec<u8, A>impl<A> Write for Vec<u8, A> where
A: Allocator, where
S: AsRef<str> + Sync,
A: Allocator,
Generate text based on a vector of promp texts. Read more
sourcefn generate_indices<S>(
&self,
prompt_texts: Option<&[S]>,
generate_options: Option<GenerateOptions<'_>>
) -> Vec<GeneratedIndicesOutput>ⓘNotable traits for Vec<u8, A>impl<A> Write for Vec<u8, A> where
A: Allocator, where
S: AsRef<str> + Sync,
fn generate_indices<S>(
&self,
prompt_texts: Option<&[S]>,
generate_options: Option<GenerateOptions<'_>>
) -> Vec<GeneratedIndicesOutput>ⓘNotable traits for Vec<u8, A>impl<A> Write for Vec<u8, A> where
A: Allocator, where
S: AsRef<str> + Sync,
A: Allocator,
Generate token indices without decoding (useful for token-level operations before returning final text or as validation step during training). Read more
sourcefn generate_from_ids_and_past(
&self,
input_ids: Tensor,
attention_mask: Option<Tensor>,
generate_options: Option<GenerateOptions<'_>>
) -> Vec<GeneratedIndicesOutput>ⓘNotable traits for Vec<u8, A>impl<A> Write for Vec<u8, A> where
A: Allocator,
fn generate_from_ids_and_past(
&self,
input_ids: Tensor,
attention_mask: Option<Tensor>,
generate_options: Option<GenerateOptions<'_>>
) -> Vec<GeneratedIndicesOutput>ⓘNotable traits for Vec<u8, A>impl<A> Write for Vec<u8, A> where
A: Allocator,
A: Allocator,
Generate token indices given a list of indices (useful when the input has been pre-tokenized). Returns a list of output tokens that need to be decoded using a tokenizer. Read more
sourcefn get_tokenizer(&self) -> &TokenizerOption
fn get_tokenizer(&self) -> &TokenizerOption
Returns a reference to the text generator’s tokenizer Read more
fn half(&mut self)
fn float(&mut self)
fn set_device(&mut self, device: Device)
Auto Trait Implementations
impl RefUnwindSafe for T5ForConditionalGeneration
impl Send for T5ForConditionalGeneration
impl !Sync for T5ForConditionalGeneration
impl Unpin for T5ForConditionalGeneration
impl UnwindSafe for T5ForConditionalGeneration
Blanket Implementations
sourceimpl<T> BorrowMut<T> for T where
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
const: unstable · sourcefn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
sourceimpl<T> Instrument for T
impl<T> Instrument for T
sourcefn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Instruments this type with the provided Span, returning an
Instrumented wrapper. Read more
sourcefn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
impl<T> Pointable for T
impl<T> Pointable for T
impl<V, T> VZip<V> for T where
V: MultiLane<T>,
impl<V, T> VZip<V> for T where
V: MultiLane<T>,
fn vzip(self) -> V
sourceimpl<T> WithSubscriber for T
impl<T> WithSubscriber for T
sourcefn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self> where
S: Into<Dispatch>,
fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self> where
S: Into<Dispatch>,
Attaches the provided Subscriber to this type, returning a
WithDispatch wrapper. Read more
sourcefn with_current_subscriber(self) -> WithDispatch<Self>
fn with_current_subscriber(self) -> WithDispatch<Self>
Attaches the current default Subscriber to this type, returning a
WithDispatch wrapper. Read more