pub struct OpenAIGPTLMHeadModel { /* private fields */ }
Expand description

GPT Language Modeling head

GPT model with a decoding head (linear layer without bias). The weights of the linear layer are tied to the word embeddings It is made of the following blocks:

  • transformer: Base Gpt2Model
  • lm_head: Linear layer without bias tied to the weights of the token id embeddings

Implementations

Build a new OpenAIGPTLMHeadModel

Arguments
  • p - Variable store path for the root of the GPT model
  • config - Gpt2Config object defining the model architecture
Example
use rust_bert::gpt2::Gpt2Config;
use rust_bert::openai_gpt::OpenAIGPTLMHeadModel;
use rust_bert::Config;
use std::path::Path;
use tch::{nn, Device};

let config_path = Path::new("path/to/config.json");
let device = Device::Cpu;
let p = nn::VarStore::new(device);
let config = Gpt2Config::from_file(config_path);
let gpt2: OpenAIGPTLMHeadModel = OpenAIGPTLMHeadModel::new(&p.root() / "gpt", &config);

Trait Implementations

Forward pass through the model

Arguments
  • input_ids - Optional input tensor of shape (batch size, sequence_length). If None, pre-computed embeddings must be provided (see input_embeds)
  • _layer_past - Unused for GPT
  • attention_mask - Optional mask of shape (batch size, sequence_length). Masked position have value 0, non-masked value 1. If None set to 1
  • input_embeds - Optional pre-computed input embeddings of shape (batch size, sequence_length, hidden_size). If None, input ids must be provided (see input_ids)
  • token_type_ids - Optional token type ids used to indicate the portion of the input the token belongs to. If not None, token type embeddings will be added to the token and position embeddings.
  • position_ids - Optional position ids of shape (batch size, sequence_length). If None, will be incremented starting from the length of the past input.
  • _encoder_outputs - Unused for GPT
  • _decoder_input_ids - Unused for GPT
  • train - boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
Returns
  • LMModelOutput containing:
    • lm_logits - Tensor of shape (batch size, sequence_length, vocab_size) representing the logits for each vocab item and position
    • cache - None
    • encoder_hidden_states - None
    • all_hidden_states - Option<Vec<Tensor>> of length num_hidden_layers with shape (batch size, sequence_length, hidden_size)
    • all_attentions - Option<Vec<Tensor>> of length num_hidden_layers with shape (batch size, sequence_length, hidden_size)
Example
use rust_bert::gpt2::Gpt2Config;
use rust_bert::openai_gpt::OpenAIGPTLMHeadModel;
use rust_bert::pipelines::generation_utils::{LMHeadModel, Cache};
 let (batch_size, sequence_length, past_sequence_length) = (64, 128, 56);
 let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device));
 let attention_mask = Tensor::zeros(&[batch_size, sequence_length], (Int64, device));
 let token_type_ids = Tensor::ones(&[batch_size, sequence_length], (Int64, device));
 let position_ids = Tensor::arange(sequence_length, (Int64, device)).expand(&[batch_size, sequence_length], true);

 let model_output = no_grad(|| {
   gpt_model
        .forward_t(Some(&input_tensor),
                   Cache::None,
                   Some(&attention_mask),
                   Some(&token_type_ids),
                   Some(&position_ids),
                   None,
                   None,
                   None,
                   false).unwrap()
   });

Generate text based on a vector of promp texts. Read more

Generate token indices without decoding (useful for token-level operations before returning final text or as validation step during training). Read more

Generate token indices given a list of indices (useful when the input has been pre-tokenized). Returns a list of output tokens that need to be decoded using a tokenizer. Read more

Returns a reference to the text generator’s tokenizer Read more

Auto Trait Implementations

Blanket Implementations

Gets the TypeId of self. Read more

Immutably borrows from an owned value. Read more

Mutably borrows from an owned value. Read more

Returns the argument unchanged.

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more

Instruments this type with the current Span, returning an Instrumented wrapper. Read more

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

The alignment of pointer.

The type for initializers.

Initializes a with the given initializer. Read more

Dereferences the given pointer. Read more

Mutably dereferences the given pointer. Read more

Drops the object pointed to by the given pointer. Read more

Should always be Self

The type returned in the event of a conversion error.

Performs the conversion.

The type returned in the event of a conversion error.

Performs the conversion.

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more