Struct rust_bert::xlnet::XLNetForSequenceClassification [−][src]
XLNetForSequenceClassification
XLNet model with a classification head for sequence classification tasks It is made of the following blocks:
base_model
:XLNetModel
sequence_summary
:SequenceSummary
to pool the base model hidden stateslogits_proj
: Linear layer projecting the hidden layer pooled output to the target space
Implementations
impl XLNetForSequenceClassification
[src]
pub fn new<'p, P>(
p: P,
config: &XLNetConfig
) -> Result<XLNetForSequenceClassification, RustBertError> where
P: Borrow<Path<'p>>,
[src]
p: P,
config: &XLNetConfig
) -> Result<XLNetForSequenceClassification, RustBertError> where
P: Borrow<Path<'p>>,
Build a new XLNetForSequenceClassification
Arguments
p
- Variable store path for the root of the XLNet modelconfig
-XLNetConfig
object defining the model architecture
Example
use rust_bert::xlnet::{XLNetConfig, XLNetForSequenceClassification}; use rust_bert::Config; use std::path::Path; use tch::{nn, Device}; let config_path = Path::new("path/to/config.json"); let device = Device::Cpu; let p = nn::VarStore::new(device); let config = XLNetConfig::from_file(config_path); let xlnet_model = XLNetForSequenceClassification::new(&p.root(), &config);
pub fn forward_t(
&self,
input_ids: Option<&Tensor>,
attention_mask: Option<&Tensor>,
old_layer_states: Option<Vec<Option<LayerState>>>,
perm_mask: Option<&Tensor>,
target_mapping: Option<&Tensor>,
token_type_ids: Option<&Tensor>,
input_embeds: Option<Tensor>,
train: bool
) -> XLNetSequenceClassificationOutput
[src]
&self,
input_ids: Option<&Tensor>,
attention_mask: Option<&Tensor>,
old_layer_states: Option<Vec<Option<LayerState>>>,
perm_mask: Option<&Tensor>,
target_mapping: Option<&Tensor>,
token_type_ids: Option<&Tensor>,
input_embeds: Option<Tensor>,
train: bool
) -> XLNetSequenceClassificationOutput
Forward pass through the model
Arguments
input_ids
- Optional input tensor of shape (batch size, sequence_length). This orinput_embeds
must be provided.attention_mask
- Optional attention mask of shape (batch size, sequence_length) for the encoder positions. Positions with a mask with value 0 will be masked.perm_mask
- Optional tensor of shape (batch size, sequence_length, sequence_length). Mask to indicate the attention pattern for each input token (only used for pre-training over permutations, rather than simple token masking).target_mapping
- Optional tensor of shape (batch size, num_tokens, sequence_length) indicating the position of the masked words to predict.token_type_ids
- Optional tensor (batch size, sequence_length) indicating the sentence ID of the token (0: first sentence, 1: second sentence).input_embeds
- Optional input tensor of shape (batch size, sequence_length, embeddings dimension). This orinput_ids
must be provided.old_layer_states
- Optional vector of lengthnum_layers
containing optionalLayerStates
containing the last calculated content for the attention layers. This avoids recomputing attention weights at past positions and speeds up decoding.train
- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
Returns
XLNetSequenceClassificationOutput
containing:logits
-Tensor
of shape (batch size, num_classes) representing the logits for each batch item and classnext_cache
-Option<Vec<Option<LayerState>>>
of length n_layer containing the past content for the the attention layers with shape (past_sequence_length, batch size, hidden_size)all_hidden_states
-Option<Vec<(Tensor, Option<Tensor>)>>
of length n_layer with shape (batch size, sequence_length, hidden_size) (with optional query stream states if used)all_attentions
-Option<Vec<(Tensor, Option<Tensor>)>>
of length n_layer with shape (batch size, sequence_length, hidden_size) (with optional query stream states if used)
Example
use rust_bert::xlnet::{XLNetConfig, XLNetForSequenceClassification}; let (batch_size, sequence_length) = (64, 128); let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device)); let attention_mask = Tensor::ones(&[batch_size, sequence_length], (Int64, device)); let target_tensor = Tensor::ones(&[batch_size, sequence_length], (Int64, device)); let target_mapping = Tensor::zeros(&[64, 1, 128], (Kind::Float, device)); let _ = target_mapping.narrow(2, 3, 1).fill_(1.0); let model_output = no_grad(|| { xlnet_model.forward_t( Some(&input_tensor), Some(&attention_mask), None, Some(&target_mapping), None, None, None, false ) });
Auto Trait Implementations
impl RefUnwindSafe for XLNetForSequenceClassification
impl Send for XLNetForSequenceClassification
impl !Sync for XLNetForSequenceClassification
impl Unpin for XLNetForSequenceClassification
impl UnwindSafe for XLNetForSequenceClassification
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> From<T> for T
[src]
impl<T> Instrument for T
[src]
pub fn instrument(self, span: Span) -> Instrumented<Self>
[src]
pub fn in_current_span(self) -> Instrumented<Self>
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T> Pointable for T
pub const ALIGN: usize
type Init = T
The type for initializers.
pub unsafe fn init(init: <T as Pointable>::Init) -> usize
pub unsafe fn deref<'a>(ptr: usize) -> &'a T
pub unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T
pub unsafe fn drop(ptr: usize)
impl<T> Same<T> for T
type Output = T
Should always be Self
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
pub fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
impl<V, T> VZip<V> for T where
V: MultiLane<T>,
V: MultiLane<T>,