Struct rust_bert::reformer::ReformerModelWithLMHead[][src]

pub struct ReformerModelWithLMHead { /* fields omitted */ }

Reformer Model for text generation

Reformer model with a vocabulary decoding head It is made of the following blocks:

  • reformer: ReformerModel Base Reformer model
  • lm_head: ReformerLMHead projecting hidden states to the vocabulary dimension

Implementations

impl ReformerModelWithLMHead[src]

pub fn new<'p, P>(
    p: P,
    config: &ReformerConfig
) -> Result<ReformerModelWithLMHead, RustBertError> where
    P: Borrow<Path<'p>>, 
[src]

Build a new ReformerModelWithLMHead

Arguments

  • p - Variable store path for the root of the BART model
  • config - ReformerConfig object defining the model architecture

Example

use rust_bert::reformer::{ReformerConfig, ReformerModelWithLMHead};
use rust_bert::Config;
use std::path::Path;
use tch::{nn, Device};

let config_path = Path::new("path/to/config.json");
let device = Device::Cpu;
let p = nn::VarStore::new(device);
let config = ReformerConfig::from_file(config_path);
let reformer_model: ReformerModelWithLMHead =
    ReformerModelWithLMHead::new(&p.root(), &config).unwrap();

pub fn forward_t(
    &self,
    input_ids: Option<&Tensor>,
    position_ids: Option<&Tensor>,
    input_embeds: Option<Tensor>,
    attention_mask: Option<&Tensor>,
    num_hashes: Option<i64>,
    old_layer_states: Option<Vec<Option<LayerState>>>,
    train: bool
) -> Result<ReformerLMModelOutput, RustBertError>
[src]

Forward pass through the model

Arguments

  • input_ids - Optional input tensor of shape (batch size, sequence_length). Must be provided when no pre-computed embeddings are given.
  • position_ids - Optional input tensor of shape (batch size, sequence_length). If not provided will be calculated on the fly starting from position 0.
  • input_embeds - Optional input tensor of shape (batch size, sequence_length, embeddings_dim). Must be provided when no input ids are given.
  • attention_mask - Optional attention mask of shape (batch size, sequence_length). Positions with a mask with value 0 will be masked.
  • num_hashes - Optional specification of the number of hashes to use. If not provided will use the value provided in the model configuration.
  • old_layer_states - Optional cached input (Option<Vec<Option<LayerState>>>) containing previous values for the cached states and buckets.
  • train - boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.

Returns

  • ReformerLMModelOutput containing:
    • logits - Tensor of shape (batch size, sequence_length, vocab_size) representing the logits for each vocabulary item
    • all_hidden_states - Option<Vec<Tensor>> of length n_layers with shape (batch size, sequence_length, hidden_size)
    • all_attentions - Option<Vec<Tensor>> of length n_layers with shape (batch size, sequence_length, hidden_size)
    • cache - Option<Vec<Option<LayerState>>> of length n_layer containing values for the states and buckets for future use.

Example

use rust_bert::reformer::{ReformerConfig, ReformerModelWithLMHead};
let (batch_size, sequence_length) = (64, 128);
let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device));
let input_positions = Tensor::arange(sequence_length, (Kind::Int64, device)).unsqueeze(0).expand(&[batch_size, sequence_length], true);
let attention_mask = Tensor::ones(&[batch_size, sequence_length], (Int64, device));

let model_output = no_grad(|| {
    reformer_model.forward_t(
        Some(&input_tensor),    
        Some(&input_positions),
        None,
        Some(&attention_mask),
        Some(4),
        None,
        false,
    )
});

Trait Implementations

impl LMHeadModel for ReformerModelWithLMHead[src]

impl LanguageGenerator<ReformerModelWithLMHead, ReformerVocab, ReformerTokenizer> for ReformerGenerator[src]

Auto Trait Implementations

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T> Instrument for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> Pointable for T

type Init = T

The type for initializers.

impl<T> Same<T> for T

type Output = T

Should always be Self

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<V, T> VZip<V> for T where
    V: MultiLane<T>,