Struct rust_bert::reformer::ReformerModel [−][src]
Reformer Base model
Base architecture for the Reformer model. Usually complemented with a task-specific head, such as a language model head. It is made of the following blocks:
embeddings:ReformerEmbeddingsReformer embeddings, combining word and position embeddingsencoder:ReformerEncoder(transformer) made of a vector of Reformer layer with local or LSH attention. caching is implemented for the decoder to avoid recalculating static states (encoder key/values and previously calculated decoder key/values)least_common_mult_chunk_length: least common chunk length for all attention layersmin_chunk_length: minimum chunk length for all attention layerspad_token_id: padding token id used to pad to chunk length multiple if input is long enough to be chunked.
Implementations
impl ReformerModel[src]
pub fn new<'p, P>(
p: P,
config: &ReformerConfig
) -> Result<ReformerModel, RustBertError> where
P: Borrow<Path<'p>>, [src]
p: P,
config: &ReformerConfig
) -> Result<ReformerModel, RustBertError> where
P: Borrow<Path<'p>>,
Build a new ReformerModel
Arguments
p- Variable store path for the root of the BART modelconfig-ReformerConfigobject defining the model architecture
Example
use rust_bert::reformer::{ReformerConfig, ReformerModel}; use rust_bert::Config; use std::path::Path; use tch::{nn, Device}; let config_path = Path::new("path/to/config.json"); let device = Device::Cpu; let p = nn::VarStore::new(device); let config = ReformerConfig::from_file(config_path); let reformer_model: ReformerModel = ReformerModel::new(&p.root() / "reformer", &config).unwrap();
pub fn forward_t(
&self,
input_ids: Option<&Tensor>,
position_ids: Option<&Tensor>,
input_embeds: Option<Tensor>,
attention_mask: Option<&Tensor>,
num_hashes: Option<i64>,
old_layer_states: Option<Vec<Option<LayerState>>>,
train: bool
) -> Result<ReformerModelOutput, RustBertError>[src]
&self,
input_ids: Option<&Tensor>,
position_ids: Option<&Tensor>,
input_embeds: Option<Tensor>,
attention_mask: Option<&Tensor>,
num_hashes: Option<i64>,
old_layer_states: Option<Vec<Option<LayerState>>>,
train: bool
) -> Result<ReformerModelOutput, RustBertError>
Forward pass through the model
Arguments
input_ids- Optional input tensor of shape (batch size, sequence_length). Must be provided when no pre-computed embeddings are given.position_ids- Optional input tensor of shape (batch size, sequence_length). If not provided will be calculated on the fly starting from position 0.input_embeds- Optional input tensor of shape (batch size, sequence_length, embeddings_dim). Must be provided when no input ids are given.attention_mask- Optional attention mask of shape (batch size, sequence_length). Positions with a mask with value 0 will be masked.num_hashes- Optional specification of the number of hashes to use. If not provided will use the value provided in the model configuration.old_layer_states- Optional cached input (Option<Vec<Option<LayerState>>>) containing previous values for the cached states and buckets.train- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
Returns
ReformerModelOutputcontaining:hidden_states-Tensorof shape (batch size, sequence_length, hidden_size) representing the activations of the last hidden stateall_hidden_states-Option<Vec<Tensor>>of length n_layers with shape (batch size, sequence_length, hidden_size)all_attentions-Option<Vec<Tensor>>of length n_layers with shape (batch size, sequence_length, hidden_size)cache-Option<Vec<Option<LayerState>>>of length n_layer containing values for the states and buckets for future use.
Example
use rust_bert::reformer::{ReformerConfig, ReformerModel}; let (batch_size, sequence_length) = (64, 128); let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device)); let input_positions = Tensor::arange(sequence_length, (Kind::Int64, device)) .unsqueeze(0) .expand(&[batch_size, sequence_length], true); let attention_mask = Tensor::ones(&[batch_size, sequence_length], (Int64, device)); let model_output = no_grad(|| { reformer_model.forward_t( Some(&input_tensor), Some(&input_positions), None, Some(&attention_mask), Some(4), None, false, ) });
Auto Trait Implementations
impl RefUnwindSafe for ReformerModel
impl Send for ReformerModel
impl !Sync for ReformerModel
impl Unpin for ReformerModel
impl UnwindSafe for ReformerModel
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized, [src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized, [src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized, [src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut T[src]
impl<T> From<T> for T[src]
impl<T> Instrument for T[src]
pub fn instrument(self, span: Span) -> Instrumented<Self>[src]
pub fn in_current_span(self) -> Instrumented<Self>[src]
impl<T, U> Into<U> for T where
U: From<T>, [src]
U: From<T>,
impl<T> Pointable for T
pub const ALIGN: usize
type Init = T
The type for initializers.
pub unsafe fn init(init: <T as Pointable>::Init) -> usize
pub unsafe fn deref<'a>(ptr: usize) -> &'a T
pub unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T
pub unsafe fn drop(ptr: usize)
impl<T> Same<T> for T
type Output = T
Should always be Self
impl<T, U> TryFrom<U> for T where
U: Into<T>, [src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>, [src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
pub fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>[src]
impl<V, T> VZip<V> for T where
V: MultiLane<T>,
V: MultiLane<T>,