Struct rust_bert::mobilebert::MobileBertForTokenClassification [−][src]
MobileBERT for token classification (e.g. NER, POS)
Token-level classifier predicting a label for each token provided. Note that because of wordpiece tokenization, the labels predicted are not necessarily aligned with words in the sentence. It is made of the following blocks:
mobilebert: Base MobileBertModeldropout: Dropout layer before the last token-level predictions layerclassifier: Linear layer for token classification
Implementations
impl MobileBertForTokenClassification[src]
pub fn new<'p, P>(
p: P,
config: &MobileBertConfig
) -> MobileBertForTokenClassification where
P: Borrow<Path<'p>>, [src]
p: P,
config: &MobileBertConfig
) -> MobileBertForTokenClassification where
P: Borrow<Path<'p>>,
Build a new MobileBertForMultipleChoice
Arguments
p- Variable store path for the root of the MobileBERT modelconfig-MobileBertConfigobject defining the model architecture and decoder status
Example
use rust_bert::mobilebert::{MobileBertConfig, MobileBertForTokenClassification}; use rust_bert::Config; use std::path::Path; use tch::{nn, Device}; let config_path = Path::new("path/to/config.json"); let device = Device::Cpu; let p = nn::VarStore::new(device); let config = MobileBertConfig::from_file(config_path); let mobilebert = MobileBertForTokenClassification::new(&p.root(), &config);
pub fn forward_t(
&self,
input_ids: Option<&Tensor>,
token_type_ids: Option<&Tensor>,
position_ids: Option<&Tensor>,
input_embeds: Option<Tensor>,
attention_mask: Option<&Tensor>,
train: bool
) -> Result<MobileBertTokenClassificationOutput, RustBertError>[src]
&self,
input_ids: Option<&Tensor>,
token_type_ids: Option<&Tensor>,
position_ids: Option<&Tensor>,
input_embeds: Option<Tensor>,
attention_mask: Option<&Tensor>,
train: bool
) -> Result<MobileBertTokenClassificationOutput, RustBertError>
Forward pass through the model
Arguments
input_ids- Optional input tensor of shape (batch size, sequence_length). If None, pre-computed embeddings must be provided (seeinput_embeds)token_type_ids- Optional segment id of shape (batch size, sequence_length). Convention is value of 0 for the first sentence (incl. SEP) and 1 for the second sentence. If None set to 0.position_ids- Optional position ids of shape (batch size, sequence_length). If None, will be incremented from 0.input_embeds- Optional pre-computed input embeddings of shape (batch size, sequence_length, hidden_size). If None, input ids must be provided (seeinput_ids)attention_mask- Optional mask of shape (batch size, sequence_length). Masked position have value 0, non-masked value 1. If None set to 1train- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
Returns
MobileBertTokenClassificationOutputcontaining:logits-Tensorof shape (batch size, sequence_length, num_labels) containing the logits for each of the input tokens and classesall_hidden_states-Option<Vec<Tensor>>of length num_hidden_layers with shape (batch size, sequence_length, hidden_size)all_attentions-Option<Vec<Tensor>>of length num_hidden_layers with shape (batch size, sequence_length, hidden_size)
Example
use rust_bert::mobilebert::{MobileBertConfig, MobileBertForTokenClassification}; let model = MobileBertForTokenClassification::new(&vs.root(), &config); let (batch_size, sequence_length) = (64, 128); let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device)); let attention_mask = Tensor::zeros(&[batch_size, sequence_length], (Int64, device)); let token_type_ids = Tensor::zeros(&[batch_size, sequence_length], (Int64, device)); let position_ids = Tensor::arange(sequence_length, (Int64, device)) .expand(&[batch_size, sequence_length], true); let model_output = no_grad(|| { model .forward_t( Some(&input_tensor), Some(&token_type_ids), Some(&position_ids), None, Some(&attention_mask), false, ) .unwrap() });
Auto Trait Implementations
impl RefUnwindSafe for MobileBertForTokenClassification
impl Send for MobileBertForTokenClassification
impl !Sync for MobileBertForTokenClassification
impl Unpin for MobileBertForTokenClassification
impl UnwindSafe for MobileBertForTokenClassification
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized, [src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized, [src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized, [src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut T[src]
impl<T> From<T> for T[src]
impl<T> Instrument for T[src]
pub fn instrument(self, span: Span) -> Instrumented<Self>[src]
pub fn in_current_span(self) -> Instrumented<Self>[src]
impl<T, U> Into<U> for T where
U: From<T>, [src]
U: From<T>,
impl<T> Pointable for T
pub const ALIGN: usize
type Init = T
The type for initializers.
pub unsafe fn init(init: <T as Pointable>::Init) -> usize
pub unsafe fn deref<'a>(ptr: usize) -> &'a T
pub unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T
pub unsafe fn drop(ptr: usize)
impl<T> Same<T> for T
type Output = T
Should always be Self
impl<T, U> TryFrom<U> for T where
U: Into<T>, [src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>, [src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
pub fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>[src]
impl<V, T> VZip<V> for T where
V: MultiLane<T>,
V: MultiLane<T>,