Struct rust_bert::longformer::LongformerModel [−][src]
LongformerModel Base model
Base architecture for LongformerModel models. Task-specific models will be built from this common base model It is made of the following blocks:
embeddings
: LongformerEmbeddings containing word, position and segment id embeddingsencoder
: LongformerEncoderpooler
: Optional pooling layer extracting the representation of the first token for each batch item
Implementations
impl LongformerModel
[src]
pub fn new<'p, P>(
p: P,
config: &LongformerConfig,
add_pooling_layer: bool
) -> LongformerModel where
P: Borrow<Path<'p>>,
[src]
p: P,
config: &LongformerConfig,
add_pooling_layer: bool
) -> LongformerModel where
P: Borrow<Path<'p>>,
Build a new LongformerModel
Arguments
p
- Variable store path for the root of the Longformer modelconfig
-LongformerConfig
object defining the model architecture
Example
use rust_bert::longformer::{LongformerConfig, LongformerModel}; use rust_bert::Config; use std::path::Path; use tch::{nn, Device}; let config_path = Path::new("path/to/config.json"); let device = Device::Cpu; let p = nn::VarStore::new(device); let config = LongformerConfig::from_file(config_path); let add_pooling_layer = false; let longformer_model = LongformerModel::new(&p.root(), &config, add_pooling_layer);
pub fn forward_t(
&self,
input_ids: Option<&Tensor>,
attention_mask: Option<&Tensor>,
global_attention_mask: Option<&Tensor>,
token_type_ids: Option<&Tensor>,
position_ids: Option<&Tensor>,
input_embeds: Option<&Tensor>,
train: bool
) -> Result<LongformerModelOutput, RustBertError>
[src]
&self,
input_ids: Option<&Tensor>,
attention_mask: Option<&Tensor>,
global_attention_mask: Option<&Tensor>,
token_type_ids: Option<&Tensor>,
position_ids: Option<&Tensor>,
input_embeds: Option<&Tensor>,
train: bool
) -> Result<LongformerModelOutput, RustBertError>
Forward pass through the model
Arguments
input_ids
- Optional input tensor of shape (batch size, sequence_length). This orinput_embeds
must be provided.attention_mask
- Optional attention mask of shape (batch size, sequence_length). Positions with a mask with value 0 will be masked.global_attention_mask
- Optional attention mask of shape (batch size, sequence_length). Positions with a mask with value 1 will attend all other positions in the sequence.token_type_ids
- Optional segment id of shape (batch size, sequence_length). Convention is value of 0 for the first sentence (incl. SEP) and 1 for the second sentence. If None set to 0.position_ids
- Optional position ids of shape (batch size, sequence_length). If None, will be incremented from 0.input_embeds
- Optional pre-computed input embeddings of shape (batch size, sequence_length, hidden_size). If None, input ids must be provided (seeinput_ids
)train
- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
Returns
LongformerModelOutput
containing:hidden_state
-Tensor
of shape (batch size, sequence_length, hidden_size)pooled_output
-Tensor
of shape (batch size, hidden_size)all_hidden_states
-Option<Vec<Tensor>>
of length num_hidden_layers with shape (batch size, sequence_length, hidden_size)all_attentions
-Option<Vec<Tensor>>
of length num_hidden_layers with shape (batch size, num_heads, sequence_length, * attention_window_size*, x + attention_window_size + 1) where x is the number of tokens with global attentionall_global_attentions
-Option<Vec<Tensor>>
of length num_hidden_layers with shape (batch size, num_heads, sequence_length, attention_window_size, x) where x is the number of tokens with global attention
Example
use rust_bert::longformer::{LongformerConfig, LongformerModel}; let longformer_model = LongformerModel::new(&vs.root(), &config, false); let (batch_size, sequence_length, target_sequence_length) = (64, 128, 32); let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device)); let attention_mask = Tensor::ones(&[batch_size, sequence_length], (Int64, device)); let global_attention_mask = Tensor::zeros(&[batch_size, sequence_length], (Int64, device)); let target_tensor = Tensor::ones(&[batch_size, sequence_length], (Int64, device)); let model_output = no_grad(|| { longformer_model .forward_t( Some(&input_tensor), Some(&attention_mask), Some(&global_attention_mask), None, None, None, false, ) .unwrap() });
Auto Trait Implementations
impl RefUnwindSafe for LongformerModel
impl Send for LongformerModel
impl !Sync for LongformerModel
impl Unpin for LongformerModel
impl UnwindSafe for LongformerModel
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> From<T> for T
[src]
impl<T> Instrument for T
[src]
pub fn instrument(self, span: Span) -> Instrumented<Self>
[src]
pub fn in_current_span(self) -> Instrumented<Self>
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T> Pointable for T
pub const ALIGN: usize
type Init = T
The type for initializers.
pub unsafe fn init(init: <T as Pointable>::Init) -> usize
pub unsafe fn deref<'a>(ptr: usize) -> &'a T
pub unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T
pub unsafe fn drop(ptr: usize)
impl<T> Same<T> for T
type Output = T
Should always be Self
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
pub fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
impl<V, T> VZip<V> for T where
V: MultiLane<T>,
V: MultiLane<T>,