Struct rust_bert::electra::ElectraForTokenClassification [−][src]
Electra for token classification (e.g. POS, NER)
Electra model with a token tagging head It is made of the following blocks:
electra:ElectraModel(based on aBertEncoderand custom embeddings)dropout: Dropout layerclassifier: linear layer of dimension (hidden_size, num_classes) to project the output to the target label space
Implementations
impl ElectraForTokenClassification[src]
Defines the implementation of the ElectraForTokenClassification.
pub fn new<'p, P>(p: P, config: &ElectraConfig) -> ElectraForTokenClassification where
P: Borrow<Path<'p>>, [src]
P: Borrow<Path<'p>>,
Build a new ElectraForTokenClassification
Arguments
p- Variable store path for the root of the Electra modelconfig-ElectraConfigobject defining the model architecture
Example
use rust_bert::electra::{ElectraConfig, ElectraForTokenClassification}; use rust_bert::Config; use std::path::Path; use tch::{nn, Device}; let config_path = Path::new("path/to/config.json"); let device = Device::Cpu; let p = nn::VarStore::new(device); let config = ElectraConfig::from_file(config_path); let electra_model: ElectraForTokenClassification = ElectraForTokenClassification::new(&p.root(), &config);
pub fn forward_t(
&self,
input_ids: Option<Tensor>,
mask: Option<Tensor>,
token_type_ids: Option<Tensor>,
position_ids: Option<Tensor>,
input_embeds: Option<Tensor>,
train: bool
) -> ElectraTokenClassificationOutput[src]
&self,
input_ids: Option<Tensor>,
mask: Option<Tensor>,
token_type_ids: Option<Tensor>,
position_ids: Option<Tensor>,
input_embeds: Option<Tensor>,
train: bool
) -> ElectraTokenClassificationOutput
Forward pass through the model
Arguments
input_ids- Optional input tensor of shape (batch size, sequence_length). If None, pre-computed embeddings must be provided (seeinput_embeds)mask- Optional mask of shape (batch size, sequence_length). Masked position have value 0, non-masked value 1. If None set to 1token_type_ids- Optional segment id of shape (batch size, sequence_length). Convention is value of 0 for the first sentence (incl. SEP) and 1 for the second sentence. If None set to 0.position_ids- Optional position ids of shape (batch size, sequence_length). If None, will be incremented from 0.input_embeds- Optional pre-computed input embeddings of shape (batch size, sequence_length, hidden_size). If None, input ids must be provided (seeinput_ids)train- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
Returns
ElectraTokenClassificationOutputcontaining:logits-Tensorof shape (batch size, sequence_length, num_labels) containing the logits for each of the input tokens and classesall_hidden_states-Option<Vec<Tensor>>of length num_hidden_layers with shape (batch size, sequence_length, hidden_size)all_attentions-Option<Vec<Tensor>>of length num_hidden_layers with shape (batch size, sequence_length, hidden_size)
Example
let (batch_size, sequence_length) = (64, 128); let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device)); let mask = Tensor::zeros(&[batch_size, sequence_length], (Int64, device)); let token_type_ids = Tensor::zeros(&[batch_size, sequence_length], (Int64, device)); let position_ids = Tensor::arange(sequence_length, (Int64, device)).expand(&[batch_size, sequence_length], true); let model_output = no_grad(|| { electra_model .forward_t(Some(input_tensor), Some(mask), Some(token_type_ids), Some(position_ids), None, false) });
Auto Trait Implementations
impl RefUnwindSafe for ElectraForTokenClassification
impl Send for ElectraForTokenClassification
impl !Sync for ElectraForTokenClassification
impl Unpin for ElectraForTokenClassification
impl UnwindSafe for ElectraForTokenClassification
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized, [src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized, [src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized, [src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut T[src]
impl<T> From<T> for T[src]
impl<T> Instrument for T[src]
pub fn instrument(self, span: Span) -> Instrumented<Self>[src]
pub fn in_current_span(self) -> Instrumented<Self>[src]
impl<T, U> Into<U> for T where
U: From<T>, [src]
U: From<T>,
impl<T> Pointable for T
pub const ALIGN: usize
type Init = T
The type for initializers.
pub unsafe fn init(init: <T as Pointable>::Init) -> usize
pub unsafe fn deref<'a>(ptr: usize) -> &'a T
pub unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T
pub unsafe fn drop(ptr: usize)
impl<T> Same<T> for T
type Output = T
Should always be Self
impl<T, U> TryFrom<U> for T where
U: Into<T>, [src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>, [src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
pub fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>[src]
impl<V, T> VZip<V> for T where
V: MultiLane<T>,
V: MultiLane<T>,