Struct rust_bert::distilbert::DistilBertModelClassifier [−][src]
DistilBERT for sequence classification
Base DistilBERT model with a pre-classifier and classifier heads to perform sentence or document-level classification It is made of the following blocks:
distil_bert_model: Base DistilBertModelpre_classifier: DistilBERT linear layer for classificationclassifier: DistilBERT linear layer for classification
Implementations
impl DistilBertModelClassifier[src]
pub fn new<'p, P>(p: P, config: &DistilBertConfig) -> DistilBertModelClassifier where
P: Borrow<Path<'p>>, [src]
P: Borrow<Path<'p>>,
Build a new DistilBertModelClassifier for sequence classification
Arguments
p- Variable store path for the root of the DistilBertModelClassifier modelconfig-DistilBertConfigobject defining the model architecture
Example
use rust_bert::distilbert::{DistilBertConfig, DistilBertModelClassifier}; use rust_bert::Config; use std::path::Path; use tch::{nn, Device}; let config_path = Path::new("path/to/config.json"); let device = Device::Cpu; let p = nn::VarStore::new(device); let config = DistilBertConfig::from_file(config_path); let distil_bert: DistilBertModelClassifier = DistilBertModelClassifier::new(&p.root() / "distilbert", &config);
pub fn forward_t(
&self,
input: Option<Tensor>,
mask: Option<Tensor>,
input_embeds: Option<Tensor>,
train: bool
) -> Result<DistilBertSequenceClassificationOutput, RustBertError>[src]
&self,
input: Option<Tensor>,
mask: Option<Tensor>,
input_embeds: Option<Tensor>,
train: bool
) -> Result<DistilBertSequenceClassificationOutput, RustBertError>
Forward pass through the model
Arguments
input_ids- Optional input tensor of shape (batch size, sequence_length). If None, pre-computed embeddings must be provided (seeinput_embeds)mask- Optional mask of shape (batch size, sequence_length). Masked position have value 0, non-masked value 1. If None set to 1input_embeds- Optional pre-computed input embeddings of shape (batch size, sequence_length, hidden_size). If None, input ids must be provided (seeinput_ids)train- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
Returns
DistilBertSequenceClassificationOutputcontaining:logits-Tensorof shape (batch size, num_labels)all_hidden_states-Option<Vec<Tensor>>of length num_hidden_layers with shape (batch size, sequence_length, hidden_size)all_attentions-Option<Vec<Tensor>>of length num_hidden_layers with shape (batch size, sequence_length, hidden_size)
Example
use rust_bert::distilbert::{DistilBertConfig, DistilBertModelClassifier}; let (batch_size, sequence_length) = (64, 128); let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device)); let mask = Tensor::zeros(&[batch_size, sequence_length], (Int64, device)); let model_output = no_grad(|| { distilbert_model .forward_t(Some(input_tensor), Some(mask), None, false).unwrap() });
Auto Trait Implementations
impl RefUnwindSafe for DistilBertModelClassifier
impl Send for DistilBertModelClassifier
impl !Sync for DistilBertModelClassifier
impl Unpin for DistilBertModelClassifier
impl UnwindSafe for DistilBertModelClassifier
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized, [src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized, [src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized, [src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut T[src]
impl<T> From<T> for T[src]
impl<T> Instrument for T[src]
pub fn instrument(self, span: Span) -> Instrumented<Self>[src]
pub fn in_current_span(self) -> Instrumented<Self>[src]
impl<T, U> Into<U> for T where
U: From<T>, [src]
U: From<T>,
impl<T> Pointable for T
pub const ALIGN: usize
type Init = T
The type for initializers.
pub unsafe fn init(init: <T as Pointable>::Init) -> usize
pub unsafe fn deref<'a>(ptr: usize) -> &'a T
pub unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T
pub unsafe fn drop(ptr: usize)
impl<T> Same<T> for T
type Output = T
Should always be Self
impl<T, U> TryFrom<U> for T where
U: Into<T>, [src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>, [src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
pub fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>[src]
impl<V, T> VZip<V> for T where
V: MultiLane<T>,
V: MultiLane<T>,