Struct rust_bert::distilbert::DistilBertModel[][src]

pub struct DistilBertModel { /* fields omitted */ }

DistilBERT Base model

Base architecture for DistilBERT models. Task-specific models will be built from this common base model It is made of the following blocks:

  • embeddings: token, position embeddings
  • transformer: Transformer made of a vector of layers. Each layer is made of a multi-head self-attention layer, layer norm and linear layers.

Implementations

impl DistilBertModel[src]

Defines the implementation of the DistilBertModel.

pub fn new<'p, P>(p: P, config: &DistilBertConfig) -> DistilBertModel where
    P: Borrow<Path<'p>>, 
[src]

Build a new DistilBertModel

Arguments

  • p - Variable store path for the root of the DistilBERT model
  • config - DistilBertConfig object defining the model architecture

Example

use rust_bert::distilbert::{DistilBertConfig, DistilBertModel};
use rust_bert::Config;
use std::path::Path;
use tch::{nn, Device};

let config_path = Path::new("path/to/config.json");
let device = Device::Cpu;
let p = nn::VarStore::new(device);
let config = DistilBertConfig::from_file(config_path);
let distil_bert: DistilBertModel = DistilBertModel::new(&p.root() / "distilbert", &config);

pub fn forward_t(
    &self,
    input: Option<Tensor>,
    mask: Option<Tensor>,
    input_embeds: Option<Tensor>,
    train: bool
) -> Result<DistilBertTransformerOutput, RustBertError>
[src]

Forward pass through the model

Arguments

  • input_ids - Optional input tensor of shape (batch size, sequence_length). If None, pre-computed embeddings must be provided (see input_embeds)
  • mask - Optional mask of shape (batch size, sequence_length). Masked position have value 0, non-masked value 1. If None set to 1
  • input_embeds - Optional pre-computed input embeddings of shape (batch size, sequence_length, hidden_size). If None, input ids must be provided (see input_ids)
  • train - boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.

Returns

  • DistilBertTransformerOutput containing:
    • hidden_state - Tensor of shape (batch size, sequence_length, hidden_size)
    • all_hidden_states - Option<Vec<Tensor>> of length num_hidden_layers with shape (batch size, sequence_length, hidden_size)
    • all_attentions - Option<Vec<Tensor>> of length num_hidden_layers with shape (batch size, sequence_length, hidden_size)

Example

use rust_bert::distilbert::{DistilBertConfig, DistilBertModel};
let (batch_size, sequence_length) = (64, 128);
let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device));
let mask = Tensor::zeros(&[batch_size, sequence_length], (Int64, device));

let model_output = no_grad(|| {
    distilbert_model
        .forward_t(Some(input_tensor), Some(mask), None, false)
        .unwrap()
});

Auto Trait Implementations

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T> Instrument for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> Pointable for T

type Init = T

The type for initializers.

impl<T> Same<T> for T

type Output = T

Should always be Self

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<V, T> VZip<V> for T where
    V: MultiLane<T>,