Struct rust_bert::bert::BertForTokenClassification[][src]

pub struct BertForTokenClassification { /* fields omitted */ }

BERT for token classification (e.g. NER, POS)

Token-level classifier predicting a label for each token provided. Note that because of wordpiece tokenization, the labels predicted are not necessarily aligned with words in the sentence. It is made of the following blocks:

  • bert: Base BertModel
  • classifier: Linear layer for token classification

Implementations

impl BertForTokenClassification[src]

pub fn new<'p, P>(p: P, config: &BertConfig) -> BertForTokenClassification where
    P: Borrow<Path<'p>>, 
[src]

Build a new BertForTokenClassification

Arguments

  • p - Variable store path for the root of the BertForTokenClassification model
  • config - BertConfig object defining the model architecture, number of output labels and label mapping

Example

use rust_bert::bert::{BertConfig, BertForTokenClassification};
use rust_bert::Config;
use std::path::Path;
use tch::{nn, Device};

let config_path = Path::new("path/to/config.json");
let device = Device::Cpu;
let p = nn::VarStore::new(device);
let config = BertConfig::from_file(config_path);
let bert = BertForTokenClassification::new(&p.root() / "bert", &config);

pub fn forward_t(
    &self,
    input_ids: Option<Tensor>,
    mask: Option<Tensor>,
    token_type_ids: Option<Tensor>,
    position_ids: Option<Tensor>,
    input_embeds: Option<Tensor>,
    train: bool
) -> BertTokenClassificationOutput
[src]

Forward pass through the model

Arguments

  • input_ids - Optional input tensor of shape (batch size, sequence_length). If None, pre-computed embeddings must be provided (see input_embeds)
  • mask - Optional mask of shape (batch size, sequence_length). Masked position have value 0, non-masked value 1. If None set to 1
  • token_type_ids -Optional segment id of shape (batch size, sequence_length). Convention is value of 0 for the first sentence (incl. SEP) and 1 for the second sentence. If None set to 0.
  • position_ids - Optional position ids of shape (batch size, sequence_length). If None, will be incremented from 0.
  • input_embeds - Optional pre-computed input embeddings of shape (batch size, sequence_length, hidden_size). If None, input ids must be provided (see input_ids)
  • train - boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.

Returns

  • BertTokenClassificationOutput containing:
    • logits - Tensor of shape (batch size, sequence_length, num_labels) containing the logits for each of the input tokens and classes
    • all_hidden_states - Option<Vec<Tensor>> of length num_hidden_layers with shape (batch size, sequence_length, hidden_size)
    • all_attentions - Option<Vec<Tensor>> of length num_hidden_layers with shape (batch size, sequence_length, hidden_size)

Example

let (batch_size, sequence_length) = (64, 128);
let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device));
let mask = Tensor::zeros(&[batch_size, sequence_length], (Int64, device));
let token_type_ids = Tensor::zeros(&[batch_size, sequence_length], (Int64, device));
let position_ids = Tensor::arange(sequence_length, (Int64, device))
    .expand(&[batch_size, sequence_length], true);

let model_output = no_grad(|| {
    bert_model.forward_t(
        Some(input_tensor),
        Some(mask),
        Some(token_type_ids),
        Some(position_ids),
        None,
        false,
    )
});

Auto Trait Implementations

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T> Instrument for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> Pointable for T

type Init = T

The type for initializers.

impl<T> Same<T> for T

type Output = T

Should always be Self

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<V, T> VZip<V> for T where
    V: MultiLane<T>,