Struct rust_bert::albert::AlbertForSequenceClassification [−][src]
ALBERT for sequence classification
Base ALBERT model with a classifier head to perform sentence or document-level classification It is made of the following blocks:
albert
: Base AlbertModeldropout
: Dropout layerclassifier
: linear layer for classification
Implementations
impl AlbertForSequenceClassification
[src]
pub fn new<'p, P>(
p: P,
config: &AlbertConfig
) -> AlbertForSequenceClassification where
P: Borrow<Path<'p>>,
[src]
p: P,
config: &AlbertConfig
) -> AlbertForSequenceClassification where
P: Borrow<Path<'p>>,
Build a new AlbertForSequenceClassification
Arguments
p
- Variable store path for the root of the ALBERT modelconfig
-AlbertConfig
object defining the model architecture and decoder status
Example
use rust_bert::albert::{AlbertConfig, AlbertForSequenceClassification}; use rust_bert::Config; use std::path::Path; use tch::{nn, Device}; let config_path = Path::new("path/to/config.json"); let device = Device::Cpu; let p = nn::VarStore::new(device); let config = AlbertConfig::from_file(config_path); let albert: AlbertForSequenceClassification = AlbertForSequenceClassification::new(&p.root(), &config);
pub fn forward_t(
&self,
input_ids: Option<Tensor>,
mask: Option<Tensor>,
token_type_ids: Option<Tensor>,
position_ids: Option<Tensor>,
input_embeds: Option<Tensor>,
train: bool
) -> AlbertSequenceClassificationOutput
[src]
&self,
input_ids: Option<Tensor>,
mask: Option<Tensor>,
token_type_ids: Option<Tensor>,
position_ids: Option<Tensor>,
input_embeds: Option<Tensor>,
train: bool
) -> AlbertSequenceClassificationOutput
Forward pass through the model
Arguments
input_ids
- Optional input tensor of shape (batch size, sequence_length). If None, pre-computed embeddings must be provided (seeinput_embeds
)mask
- Optional mask of shape (batch size, sequence_length). Masked position have value 0, non-masked value 1. If None set to 1token_type_ids
- Optional segment id of shape (batch size, sequence_length). Convention is value of 0 for the first sentence (incl. SEP) and 1 for the second sentence. If None set to 0.position_ids
- Optional position ids of shape (batch size, sequence_length). If None, will be incremented from 0.input_embeds
- Optional pre-computed input embeddings of shape (batch size, sequence_length, hidden_size). If None, input ids must be provided (seeinput_ids
)train
- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
Returns
AlbertSequenceClassificationOutput
containing:logits
-Tensor
of shape (batch size, num_labels)all_hidden_states
-Option<Vec<Tensor>>
of length num_hidden_layers with shape (batch size, sequence_length, hidden_size)all_attentions
-Option<Vec<Vec<Tensor>>>
of length num_hidden_layers of nested length inner_group_num with shape (batch size, sequence_length, hidden_size)
Example
use rust_bert::albert::{AlbertConfig, AlbertForSequenceClassification}; let (batch_size, sequence_length) = (64, 128); let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device)); let mask = Tensor::zeros(&[batch_size, sequence_length], (Int64, device)); let token_type_ids = Tensor::zeros(&[batch_size, sequence_length], (Int64, device)); let position_ids = Tensor::arange(sequence_length, (Int64, device)).expand(&[batch_size, sequence_length], true); let classification_output = no_grad(|| { albert_model .forward_t(Some(input_tensor), Some(mask), Some(token_type_ids), Some(position_ids), None, false) });
Auto Trait Implementations
impl RefUnwindSafe for AlbertForSequenceClassification
impl Send for AlbertForSequenceClassification
impl !Sync for AlbertForSequenceClassification
impl Unpin for AlbertForSequenceClassification
impl UnwindSafe for AlbertForSequenceClassification
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> From<T> for T
[src]
impl<T> Instrument for T
[src]
pub fn instrument(self, span: Span) -> Instrumented<Self>
[src]
pub fn in_current_span(self) -> Instrumented<Self>
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T> Pointable for T
pub const ALIGN: usize
type Init = T
The type for initializers.
pub unsafe fn init(init: <T as Pointable>::Init) -> usize
pub unsafe fn deref<'a>(ptr: usize) -> &'a T
pub unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T
pub unsafe fn drop(ptr: usize)
impl<T> Same<T> for T
type Output = T
Should always be Self
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
pub fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
impl<V, T> VZip<V> for T where
V: MultiLane<T>,
V: MultiLane<T>,