pub struct LongT5ForConditionalGeneration { /* private fields */ }
Expand description
§LongT5 Model for conditional generation
LongT5 model with a vocabulary decoding head It is made of the following blocks:
base_model
:LongT5Model
Base LongT5 modelmodel_dim
:f64
representation of the model dimension for scaling of the generated logits
Implementations§
Source§impl LongT5ForConditionalGeneration
impl LongT5ForConditionalGeneration
Sourcepub fn new<'p, P>(p: P, config: &LongT5Config) -> LongT5ForConditionalGeneration
pub fn new<'p, P>(p: P, config: &LongT5Config) -> LongT5ForConditionalGeneration
Build a new LongT5ForConditionalGeneration
§Arguments
p
- Variable store path for the root of the BART modelconfig
-LongT5Config
object defining the model architecture
§Example
use rust_bert::longt5::{LongT5Config, LongT5ForConditionalGeneration};
use rust_bert::Config;
use std::path::Path;
use tch::{nn, Device};
let config_path = Path::new("path/to/config.json");
let device = Device::Cpu;
let p = nn::VarStore::new(device);
let config = LongT5Config::from_file(config_path);
let longt5 = LongT5ForConditionalGeneration::new(&p.root() / "t5", &config);
Sourcepub fn forward_t(
&self,
input_ids: Option<&Tensor>,
attention_mask: Option<&Tensor>,
encoder_outputs: Option<&Tensor>,
decoder_input_ids: Option<&Tensor>,
decoder_attention_mask: Option<&Tensor>,
input_embeds: Option<&Tensor>,
decoder_input_embeds: Option<&Tensor>,
old_layer_states: Option<Vec<(Option<LayerState>, Option<LayerState>)>>,
train: bool,
) -> Result<T5ModelOutput, RustBertError>
pub fn forward_t( &self, input_ids: Option<&Tensor>, attention_mask: Option<&Tensor>, encoder_outputs: Option<&Tensor>, decoder_input_ids: Option<&Tensor>, decoder_attention_mask: Option<&Tensor>, input_embeds: Option<&Tensor>, decoder_input_embeds: Option<&Tensor>, old_layer_states: Option<Vec<(Option<LayerState>, Option<LayerState>)>>, train: bool, ) -> Result<T5ModelOutput, RustBertError>
Forward pass through the model
§Arguments
input_ids
- Optional input tensor of shape (batch size, source_sequence_length). This orinput_embeds
must be provided.attention_mask
- Optional attention mask of shape (batch size, source_sequence_length) for the encoder positions. Positions with a mask with value 0 will be masked.encoder_outputs
- Optional tuple made of a tensor of shape (batch size, source_sequence_length, encoder_hidden_dim) and optional vectors of tensors of length num_encoder_layers with shape (batch size, source_sequence_length, hidden_size). These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.decoder_input_ids
- Optional input tensor of shape (batch size, target_sequence_length). This ordecoder_input_embeds
must be provided.decoder_attention_mask
- Optional attention mask of shape (batch size, target_sequence_length) for the decoder positions. Positions with a mask with value 0 will be masked.input_embeds
- Optional input tensor of shape (batch size, source_sequence_length, embeddings dimension). This orinput_ids
must be provided.decoder_input_embeds
- Optional input tensor of shape (batch size, target_sequence_length, embeddings dimension). This ordecoder_input_ids
must be provided.old_layer_states
- Optional vector of lengthnum_layers
containing tuples of optionalLayerStates
containing the last calculated key and value pairs for the decoder. This avoids recomputing attention weights at past positions and speeds up decoding.train
- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
§Returns
longT5ModelOutput
containing:decoder_output
-Tensor
of shape (batch size, target_sequence_length, vocab_size) representing the logits for each sequence position and vocabulary itemencoder_hidden_states
-Tensor
of shape (batch size, source_sequence_length, hidden_size) representing the activations of the last encoder hidden statecache
-Option<Vec<(Option<Vec<LayerState, LayerState>>)>>
of length n_layer containing the encoder padding mask and past keys and values for both the self attention and the encoder cross attention of each layer of the decoder.all_encoder_hidden_states
-Option<Vec<Tensor>>
of length num_encoder_layers with shape (batch size, source_sequence_length, hidden_size)all_encoder_attentions
-Option<Vec<Tensor>>
of length num_encoder_layers with shape (batch size, source_sequence_length, hidden_size)all_decoder_hidden_states
-Option<Vec<Tensor>>
of length num_decoder_layers with shape (batch size, target_sequence_length, hidden_size)all_decoder_attentions
-Option<Vec<Tensor>>
of length num_decoder_layers with shape (batch size, target_sequence_length, hidden_size)
§Example
use rust_bert::longt5::{LongT5Config, LongT5ForConditionalGeneration};
let (batch_size, source_sequence_length, target_sequence_length) = (64, 128, 56);
let input_tensor = Tensor::rand(&[batch_size, source_sequence_length], (Int64, device));
let target_tensor = Tensor::rand(&[batch_size, target_sequence_length], (Int64, device));
let encoder_attention_mask =
Tensor::ones(&[batch_size, source_sequence_length], (Int64, device));
let decoder_attention_mask =
Tensor::ones(&[batch_size, source_sequence_length], (Int64, device));
let model_output = no_grad(|| {
longt5_model.forward_t(
Some(&input_tensor),
Some(&encoder_attention_mask),
None,
Some(&target_tensor),
Some(&decoder_attention_mask),
None,
None,
None,
false,
)
});
pub fn encode( &self, input_ids: &Tensor, attention_mask: Option<&Tensor>, ) -> Tensor
Auto Trait Implementations§
impl Freeze for LongT5ForConditionalGeneration
impl RefUnwindSafe for LongT5ForConditionalGeneration
impl Send for LongT5ForConditionalGeneration
impl !Sync for LongT5ForConditionalGeneration
impl Unpin for LongT5ForConditionalGeneration
impl UnwindSafe for LongT5ForConditionalGeneration
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more