pub struct CreateAutoMLJobRequest {
pub auto_ml_job_config: Option<AutoMLJobConfig>,
pub auto_ml_job_name: String,
pub auto_ml_job_objective: Option<AutoMLJobObjective>,
pub generate_candidate_definitions_only: Option<bool>,
pub input_data_config: Vec<AutoMLChannel>,
pub model_deploy_config: Option<ModelDeployConfig>,
pub output_data_config: AutoMLOutputDataConfig,
pub problem_type: Option<String>,
pub role_arn: String,
pub tags: Option<Vec<Tag>>,
}
Fields§
§auto_ml_job_config: Option<AutoMLJobConfig>
Contains CompletionCriteria
and SecurityConfig
settings for the AutoML job.
auto_ml_job_name: String
Identifies an Autopilot job. The name must be unique to your account and is case-insensitive.
auto_ml_job_objective: Option<AutoMLJobObjective>
Defines the objective metric used to measure the predictive quality of an AutoML job. You provide an AutoMLJobObjective$MetricName and Autopilot infers whether to minimize or maximize it.
generate_candidate_definitions_only: Option<bool>
Generates possible candidates without training the models. A candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings.
input_data_config: Vec<AutoMLChannel>
An array of channel objects that describes the input data and its location. Each channel is a named input source. Similar to InputDataConfig
supported by . Format(s) supported: CSV. Minimum of 500 rows.
model_deploy_config: Option<ModelDeployConfig>
Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.
output_data_config: AutoMLOutputDataConfig
Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job. Format(s) supported: CSV.
problem_type: Option<String>
Defines the type of supervised learning available for the candidates. Options include: BinaryClassification
, MulticlassClassification
, and Regression
. For more information, see Amazon SageMaker Autopilot problem types and algorithm support.
role_arn: String
The ARN of the role that is used to access the data.
Each tag consists of a key and an optional value. Tag keys must be unique per resource.
Trait Implementations§
Source§impl Clone for CreateAutoMLJobRequest
impl Clone for CreateAutoMLJobRequest
Source§fn clone(&self) -> CreateAutoMLJobRequest
fn clone(&self) -> CreateAutoMLJobRequest
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read more