logo
pub struct PostTextRequest {
    pub active_contexts: Option<Vec<ActiveContext>>,
    pub bot_alias: String,
    pub bot_name: String,
    pub input_text: String,
    pub request_attributes: Option<HashMap<String, String>>,
    pub session_attributes: Option<HashMap<String, String>>,
    pub user_id: String,
}

Fields

active_contexts: Option<Vec<ActiveContext>>

A list of contexts active for the request. A context can be activated when a previous intent is fulfilled, or by including the context in the request,

If you don't specify a list of contexts, Amazon Lex will use the current list of contexts for the session. If you specify an empty list, all contexts for the session are cleared.

bot_alias: String

The alias of the Amazon Lex bot.

bot_name: String

The name of the Amazon Lex bot.

input_text: String

The text that the user entered (Amazon Lex interprets this text).

request_attributes: Option<HashMap<String, String>>

Request-specific information passed between Amazon Lex and a client application.

The namespace x-amz-lex: is reserved for special attributes. Don't create any request attributes with the prefix x-amz-lex:.

For more information, see Setting Request Attributes.

session_attributes: Option<HashMap<String, String>>

Application-specific information passed between Amazon Lex and a client application.

For more information, see Setting Session Attributes.

user_id: String

The ID of the client application user. Amazon Lex uses this to identify a user's conversation with your bot. At runtime, each request must contain the userID field.

To decide the user ID to use for your application, consider the following factors.

  • The userID field must not contain any personally identifiable information of the user, for example, name, personal identification numbers, or other end user personal information.

  • If you want a user to start a conversation on one device and continue on another device, use a user-specific identifier.

  • If you want the same user to be able to have two independent conversations on two different devices, choose a device-specific identifier.

  • A user can't have two independent conversations with two different versions of the same bot. For example, a user can't have a conversation with the PROD and BETA versions of the same bot. If you anticipate that a user will need to have conversation with two different versions, for example, while testing, include the bot alias in the user ID to separate the two conversations.

Trait Implementations

Returns a copy of the value. Read more

Performs copy-assignment from source. Read more

Formats the value using the given formatter. Read more

Returns the “default value” for a type. Read more

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

Serialize this value into the given Serde serializer. Read more

Auto Trait Implementations

Blanket Implementations

Gets the TypeId of self. Read more

Immutably borrows from an owned value. Read more

Mutably borrows from an owned value. Read more

Returns the argument unchanged.

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more

Instruments this type with the current Span, returning an Instrumented wrapper. Read more

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Should always be Self

The resulting type after obtaining ownership.

Creates owned data from borrowed data, usually by cloning. Read more

🔬 This is a nightly-only experimental API. (toowned_clone_into)

Uses borrowed data to replace owned data, usually by cloning. Read more

The type returned in the event of a conversion error.

Performs the conversion.

The type returned in the event of a conversion error.

Performs the conversion.

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more