#[non_exhaustive]pub struct Empty;Expand description
Trait Implementations§
1.0.0 · Source§impl BufRead for Empty
impl BufRead for Empty
Source§fn fill_buf(&mut self) -> Result<&[u8], Error>
fn fill_buf(&mut self) -> Result<&[u8], Error>
Read methods, if empty. Read moreSource§fn consume(&mut self, _n: usize)
fn consume(&mut self, _n: usize)
amount of additional bytes from the internal buffer as having been read.
Subsequent calls to read only return bytes that have not been marked as read. Read moreSource§fn has_data_left(&mut self) -> Result<bool, Error>
fn has_data_left(&mut self) -> Result<bool, Error>
buf_read_has_data_left)read. Read moreSource§fn skip_until(&mut self, _byte: u8) -> Result<usize, Error>
fn skip_until(&mut self, _byte: u8) -> Result<usize, Error>
byte or EOF is reached. Read moreSource§fn read_line(&mut self, _buf: &mut String) -> Result<usize, Error>
fn read_line(&mut self, _buf: &mut String) -> Result<usize, Error>
0xA byte) is reached, and append
them to the provided String buffer. Read more1.0.0 · Source§impl Read for Empty
impl Read for Empty
Source§fn read(&mut self, _buf: &mut [u8]) -> Result<usize, Error>
fn read(&mut self, _buf: &mut [u8]) -> Result<usize, Error>
Source§fn read_buf(&mut self, _cursor: BorrowedCursor<'_>) -> Result<(), Error>
fn read_buf(&mut self, _cursor: BorrowedCursor<'_>) -> Result<(), Error>
read_buf)Source§fn read_vectored(
&mut self,
_bufs: &mut [IoSliceMut<'_>],
) -> Result<usize, Error>
fn read_vectored( &mut self, _bufs: &mut [IoSliceMut<'_>], ) -> Result<usize, Error>
read, except that it reads into a slice of buffers. Read moreSource§fn is_read_vectored(&self) -> bool
fn is_read_vectored(&self) -> bool
can_vector)Source§fn read_exact(&mut self, buf: &mut [u8]) -> Result<(), Error>
fn read_exact(&mut self, buf: &mut [u8]) -> Result<(), Error>
buf. Read moreSource§fn read_buf_exact(&mut self, cursor: BorrowedCursor<'_>) -> Result<(), Error>
fn read_buf_exact(&mut self, cursor: BorrowedCursor<'_>) -> Result<(), Error>
read_buf)cursor. Read moreSource§fn read_to_end(&mut self, _buf: &mut Vec<u8>) -> Result<usize, Error>
fn read_to_end(&mut self, _buf: &mut Vec<u8>) -> Result<usize, Error>
buf. Read moreSource§fn read_to_string(&mut self, _buf: &mut String) -> Result<usize, Error>
fn read_to_string(&mut self, _buf: &mut String) -> Result<usize, Error>
buf. Read more1.0.0 · Source§fn by_ref(&mut self) -> &mut Selfwhere
Self: Sized,
fn by_ref(&mut self) -> &mut Selfwhere
Self: Sized,
Read. Read more1.51.0 · Source§impl Seek for Empty
impl Seek for Empty
Source§fn seek(&mut self, _pos: SeekFrom) -> Result<u64, Error>
fn seek(&mut self, _pos: SeekFrom) -> Result<u64, Error>
Source§fn stream_len(&mut self) -> Result<u64, Error>
fn stream_len(&mut self) -> Result<u64, Error>
seek_stream_len)Source§fn stream_position(&mut self) -> Result<u64, Error>
fn stream_position(&mut self) -> Result<u64, Error>
1.73.0 · Source§impl Write for &Empty
impl Write for &Empty
Source§fn write(&mut self, buf: &[u8]) -> Result<usize, Error>
fn write(&mut self, buf: &[u8]) -> Result<usize, Error>
Source§fn is_write_vectored(&self) -> bool
fn is_write_vectored(&self) -> bool
can_vector)Source§fn write_all(&mut self, _buf: &[u8]) -> Result<(), Error>
fn write_all(&mut self, _buf: &[u8]) -> Result<(), Error>
Source§fn write_all_vectored(&mut self, _bufs: &mut [IoSlice<'_>]) -> Result<(), Error>
fn write_all_vectored(&mut self, _bufs: &mut [IoSlice<'_>]) -> Result<(), Error>
write_all_vectored)Source§fn write_fmt(&mut self, _args: Arguments<'_>) -> Result<(), Error>
fn write_fmt(&mut self, _args: Arguments<'_>) -> Result<(), Error>
1.73.0 · Source§impl Write for Empty
impl Write for Empty
Source§fn write(&mut self, buf: &[u8]) -> Result<usize, Error>
fn write(&mut self, buf: &[u8]) -> Result<usize, Error>
Source§fn is_write_vectored(&self) -> bool
fn is_write_vectored(&self) -> bool
can_vector)Source§fn write_all(&mut self, _buf: &[u8]) -> Result<(), Error>
fn write_all(&mut self, _buf: &[u8]) -> Result<(), Error>
Source§fn write_all_vectored(&mut self, _bufs: &mut [IoSlice<'_>]) -> Result<(), Error>
fn write_all_vectored(&mut self, _bufs: &mut [IoSlice<'_>]) -> Result<(), Error>
write_all_vectored)Source§fn write_fmt(&mut self, _args: Arguments<'_>) -> Result<(), Error>
fn write_fmt(&mut self, _args: Arguments<'_>) -> Result<(), Error>
impl Copy for Empty
Auto Trait Implementations§
impl Freeze for Empty
impl RefUnwindSafe for Empty
impl Send for Empty
impl Sync for Empty
impl Unpin for Empty
impl UnwindSafe for Empty
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> ExecutableCommand for T
impl<T> ExecutableCommand for T
Source§fn execute(&mut self, command: impl Command) -> Result<&mut T, Error>
fn execute(&mut self, command: impl Command) -> Result<&mut T, Error>
Executes the given command directly.
The given command its ANSI escape code will be written and flushed onto Self.
§Arguments
-
The command that you want to execute directly.
§Example
use std::io;
use crossterm::{ExecutableCommand, style::Print};
fn main() -> io::Result<()> {
// will be executed directly
io::stdout()
.execute(Print("sum:\n".to_string()))?
.execute(Print(format!("1 + 1= {} ", 1 + 1)))?;
Ok(())
// ==== Output ====
// sum:
// 1 + 1 = 2
}Have a look over at the Command API for more details.
§Notes
- In the case of UNIX and Windows 10, ANSI codes are written to the given ‘writer’.
- In case of Windows versions lower than 10, a direct WinAPI call will be made.
The reason for this is that Windows versions lower than 10 do not support ANSI codes,
and can therefore not be written to the given
writer. Therefore, there is no difference between execute and queue for those old Windows versions.
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> QueueableCommand for T
impl<T> QueueableCommand for T
Source§fn queue(&mut self, command: impl Command) -> Result<&mut T, Error>
fn queue(&mut self, command: impl Command) -> Result<&mut T, Error>
Queues the given command for further execution.
Queued commands will be executed in the following cases:
- When
flushis called manually on the given type implementingio::Write. - The terminal will
flushautomatically if the buffer is full. - Each line is flushed in case of
stdout, because it is line buffered.
§Arguments
-
The command that you want to queue for later execution.
§Examples
use std::io::{self, Write};
use crossterm::{QueueableCommand, style::Print};
fn main() -> io::Result<()> {
let mut stdout = io::stdout();
// `Print` will executed executed when `flush` is called.
stdout
.queue(Print("foo 1\n".to_string()))?
.queue(Print("foo 2".to_string()))?;
// some other code (no execution happening here) ...
// when calling `flush` on `stdout`, all commands will be written to the stdout and therefore executed.
stdout.flush()?;
Ok(())
// ==== Output ====
// foo 1
// foo 2
}Have a look over at the Command API for more details.
§Notes
- In the case of UNIX and Windows 10, ANSI codes are written to the given ‘writer’.
- In case of Windows versions lower than 10, a direct WinAPI call will be made.
The reason for this is that Windows versions lower than 10 do not support ANSI codes,
and can therefore not be written to the given
writer. Therefore, there is no difference between execute and queue for those old Windows versions.
Source§impl<W> SynchronizedUpdate for W
impl<W> SynchronizedUpdate for W
Source§fn sync_update<T>(
&mut self,
operations: impl FnOnce(&mut W) -> T,
) -> Result<T, Error>
fn sync_update<T>( &mut self, operations: impl FnOnce(&mut W) -> T, ) -> Result<T, Error>
Performs a set of actions within a synchronous update.
Updates will be suspended in the terminal, the function will be executed against self, updates will be resumed, and a flush will be performed.
§Arguments
-
Function
A function that performs the operations that must execute in a synchronized update.
§Examples
use std::io;
use crossterm::{ExecutableCommand, SynchronizedUpdate, style::Print};
fn main() -> io::Result<()> {
let mut stdout = io::stdout();
stdout.sync_update(|stdout| {
stdout.execute(Print("foo 1\n".to_string()))?;
stdout.execute(Print("foo 2".to_string()))?;
// The effects of the print command will not be present in the terminal
// buffer, but not visible in the terminal.
std::io::Result::Ok(())
})?;
// The effects of the commands will be visible.
Ok(())
// ==== Output ====
// foo 1
// foo 2
}§Notes
This command is performed only using ANSI codes, and will do nothing on terminals that do not support ANSI codes, or this specific extension.
When rendering the screen of the terminal, the Emulator usually iterates through each visible grid cell and renders its current state. With applications updating the screen a at higher frequency this can cause tearing.
This mode attempts to mitigate that.
When the synchronization mode is enabled following render calls will keep rendering the last rendered state. The terminal Emulator keeps processing incoming text and sequences. When the synchronized update mode is disabled again the renderer may fetch the latest screen buffer state again, effectively avoiding the tearing effect by unintentionally rendering in the middle a of an application screen update.