pub struct Sequential<T> { /* private fields */ }
Expand description
A dynamically sized, multi-channel sequential audio buffer.
A sequential audio buffer stores all audio data sequentially in memory, one channel after another.
An audio buffer can only be resized if it contains a type which is sample-apt For more information of what this means, see Sample.
Resizing the buffer might therefore cause a fair bit of copying, and for the worst cases, this might result in having to copy a memory region byte-by-byte since they might overlap.
Resized regions also aren’t zeroed, so certain operations might cause stale data to be visible after a resize.
let mut buffer = rotary::Sequential::<f32>::with_topology(2, 4);
buffer[0].copy_from_slice(&[1.0, 2.0, 3.0, 4.0]);
buffer[1].copy_from_slice(&[2.0, 3.0, 4.0, 5.0]);
buffer.resize(3);
assert_eq!(&buffer[0], &[1.0, 2.0, 3.0]);
assert_eq!(&buffer[1], &[2.0, 3.0, 4.0]);
buffer.resize(4);
assert_eq!(&buffer[0], &[1.0, 2.0, 3.0, 2.0]); // <- 2.0 is stale data.
assert_eq!(&buffer[1], &[2.0, 3.0, 4.0, 5.0]); // <- 5.0 is stale data.
To access the full, currently assumed valid slice you can use Sequential::as_slice or Sequential::into_vec.
let mut buffer = rotary::Sequential::<f32>::with_topology(2, 4);
buffer[0].copy_from_slice(&[1.0, 2.0, 3.0, 4.0]);
buffer[1].copy_from_slice(&[2.0, 3.0, 4.0, 5.0]);
buffer.resize(3);
assert_eq!(buffer.as_slice(), &[1.0, 2.0, 3.0, 2.0, 3.0, 4.0]);
Implementations§
Source§impl<T> Sequential<T>
impl<T> Sequential<T>
Sourcepub fn new() -> Self
pub fn new() -> Self
Construct a new empty audio buffer.
§Examples
let mut buffer = rotary::Sequential::<f32>::new();
assert_eq!(buffer.frames(), 0);
Sourcepub fn with_topology(channels: usize, frames: usize) -> Selfwhere
T: Sample,
pub fn with_topology(channels: usize, frames: usize) -> Selfwhere
T: Sample,
Allocate an audio buffer with the given topology. A “topology” is a
given number of channels
and the corresponding number of frames
in
their buffers.
§Examples
let mut buffer = rotary::Sequential::<f32>::with_topology(4, 256);
assert_eq!(buffer.frames(), 256);
assert_eq!(buffer.channels(), 4);
Sourcepub fn from_vec(data: Vec<T>, channels: usize, frames: usize) -> Self
pub fn from_vec(data: Vec<T>, channels: usize, frames: usize) -> Self
Allocate an audio buffer from a fixed-size array.
See sequential!.
§Examples
let mut buffer = rotary::sequential![[2.0; 256]; 4];
assert_eq!(buffer.frames(), 256);
assert_eq!(buffer.channels(), 4);
for chan in &buffer {
assert_eq!(chan, vec![2.0; 256]);
}
Sourcepub fn from_frames<const N: usize>(frames: [T; N], channels: usize) -> Selfwhere
T: Copy,
pub fn from_frames<const N: usize>(frames: [T; N], channels: usize) -> Selfwhere
T: Copy,
Allocate an audio buffer from a fixed-size array acting as a template for all the channels.
See sequential!.
§Examples
let mut buffer = rotary::Sequential::from_frames([1.0, 2.0, 3.0, 4.0], 2);
assert_eq!(buffer.frames(), 4);
assert_eq!(buffer.channels(), 2);
assert_eq!(buffer.as_slice(), &[1.0, 2.0, 3.0, 4.0, 1.0, 2.0, 3.0, 4.0]);
Sourcepub fn into_vec(self) -> Vec<T>
pub fn into_vec(self) -> Vec<T>
Take ownership of the backing vector.
§Examples
let mut buffer = rotary::Sequential::<f32>::with_topology(2, 4);
buffer[0].copy_from_slice(&[1.0, 2.0, 3.0, 4.0]);
buffer[1].copy_from_slice(&[2.0, 3.0, 4.0, 5.0]);
buffer.resize(3);
assert_eq!(buffer.into_vec(), vec![1.0, 2.0, 3.0, 2.0, 3.0, 4.0])
Sourcepub fn as_slice(&self) -> &[T]
pub fn as_slice(&self) -> &[T]
Access the underlying vector as a slice.
§Examples
let mut buffer = rotary::Sequential::<f32>::with_topology(2, 4);
buffer[0].copy_from_slice(&[1.0, 2.0, 3.0, 4.0]);
buffer[1].copy_from_slice(&[2.0, 3.0, 4.0, 5.0]);
buffer.resize(3);
assert_eq!(buffer.as_slice(), &[1.0, 2.0, 3.0, 2.0, 3.0, 4.0])
Sourcepub fn frames(&self) -> usize
pub fn frames(&self) -> usize
Get the number of frames in the channels of an audio buffer.
§Examples
let mut buffer = rotary::Sequential::<f32>::new();
assert_eq!(buffer.frames(), 0);
buffer.resize(256);
assert_eq!(buffer.frames(), 256);
Sourcepub fn channels(&self) -> usize
pub fn channels(&self) -> usize
Check how many channels there are in the buffer.
§Examples
let mut buffer = rotary::Sequential::<f32>::new();
assert_eq!(buffer.channels(), 0);
buffer.resize_channels(2);
assert_eq!(buffer.channels(), 2);
Sourcepub fn iter(&self) -> Iter<'_, T> ⓘ
pub fn iter(&self) -> Iter<'_, T> ⓘ
Construct an iterator over all available channels.
§Examples
use rand::Rng as _;
let mut buffer = rotary::Sequential::<f32>::with_topology(4, 256);
let all_zeros = vec![0.0; 256];
for chan in buffer.iter() {
assert_eq!(chan, &all_zeros[..]);
}
Sourcepub fn iter_mut(&mut self) -> IterMut<'_, T> ⓘ
pub fn iter_mut(&mut self) -> IterMut<'_, T> ⓘ
Construct a mutable iterator over all available channels.
§Examples
use rand::Rng as _;
let mut buffer = rotary::Sequential::<f32>::with_topology(4, 256);
let mut rng = rand::thread_rng();
for chan in buffer.iter_mut() {
rng.fill(chan);
}
Sourcepub fn resize_channels(&mut self, channels: usize)where
T: Sample,
pub fn resize_channels(&mut self, channels: usize)where
T: Sample,
Set the number of channels in use.
If the size of the buffer increases as a result, the new channels will be zeroed. If the size decreases, the channels that falls outside of the new size will be dropped.
§Examples
let mut buffer = rotary::Sequential::<f32>::new();
assert_eq!(buffer.channels(), 0);
assert_eq!(buffer.frames(), 0);
buffer.resize_channels(4);
buffer.resize(256);
assert_eq!(buffer.channels(), 4);
assert_eq!(buffer.frames(), 256);
Sourcepub fn resize(&mut self, frames: usize)where
T: Sample,
pub fn resize(&mut self, frames: usize)where
T: Sample,
Set the size of the buffer. The size is the size of each channel’s buffer.
If the size of the buffer increases as a result, the new regions in the frames will be zeroed. If the size decreases, the region will be left untouched. So if followed by another increase, the data will be “dirty”.
§Examples
let mut buffer = rotary::Sequential::<f32>::new();
assert_eq!(buffer.channels(), 0);
assert_eq!(buffer.frames(), 0);
buffer.resize_channels(4);
buffer.resize(256);
assert_eq!(buffer[1][128], 0.0);
buffer[1][128] = 42.0;
assert_eq!(buffer.channels(), 4);
assert_eq!(buffer.frames(), 256);
Decreasing and increasing the size will modify the underlying buffer:
assert_eq!(buffer[1][128], 0.0);
buffer[1][128] = 42.0;
buffer.resize(64);
assert!(buffer[1].get(128).is_none());
buffer.resize(256);
assert_eq!(buffer[1][128], 0.0);
§Stale data
Resizing a channel doesn’t “free” the underlying data or zero previously initialized regions.
Old regions which were previously sized out and ignored might contain stale data from previous uses. So this should be kept in mind when resizing this buffer dynamically.
let mut buffer = rotary::Sequential::<f32>::new();
buffer.resize_channels(4);
buffer.resize(128);
let expected = (0..128).map(|v| v as f32).collect::<Vec<_>>();
for chan in buffer.iter_mut() {
for (s, v) in chan.iter_mut().zip(&expected) {
*s = *v;
}
}
assert_eq!(buffer.get(0), Some(&expected[..]));
assert_eq!(buffer.get(1), Some(&expected[..]));
assert_eq!(buffer.get(2), Some(&expected[..]));
assert_eq!(buffer.get(3), Some(&expected[..]));
assert_eq!(buffer.get(4), None);
buffer.resize_channels(2);
assert_eq!(buffer.get(0), Some(&expected[..]));
assert_eq!(buffer.get(1), Some(&expected[..]));
assert_eq!(buffer.get(2), None);
// shrink
buffer.resize(64);
assert_eq!(buffer.get(0), Some(&expected[..64]));
assert_eq!(buffer.get(1), Some(&expected[..64]));
assert_eq!(buffer.get(2), None);
// increase - this causes some weirdness.
buffer.resize(128);
let first_overlapping = expected[..64]
.iter()
.chain(expected[..64].iter())
.copied()
.collect::<Vec<_>>();
assert_eq!(buffer.get(0), Some(&first_overlapping[..]));
// Note: second channel matches perfectly up with an old channel that was
// masked out.
assert_eq!(buffer.get(1), Some(&expected[..]));
assert_eq!(buffer.get(2), None);
Sourcepub fn get(&self, channel: usize) -> Option<&[T]>
pub fn get(&self, channel: usize) -> Option<&[T]>
Get a reference to the buffer of the given channel.
§Examples
let mut buffer = rotary::Sequential::<f32>::new();
buffer.resize_channels(4);
buffer.resize(256);
let expected = vec![0.0; 256];
assert_eq!(Some(&expected[..]), buffer.get(0));
assert_eq!(Some(&expected[..]), buffer.get(1));
assert_eq!(Some(&expected[..]), buffer.get(2));
assert_eq!(Some(&expected[..]), buffer.get(3));
assert_eq!(None, buffer.get(4));
Sourcepub fn get_mut(&mut self, channel: usize) -> Option<&mut [T]>
pub fn get_mut(&mut self, channel: usize) -> Option<&mut [T]>
Get a mutable reference to the buffer of the given channel.
§Examples
use rand::Rng as _;
let mut buffer = rotary::Sequential::<f32>::new();
buffer.resize_channels(2);
buffer.resize(256);
let mut rng = rand::thread_rng();
if let Some(left) = buffer.get_mut(0) {
rng.fill(left);
}
if let Some(right) = buffer.get_mut(1) {
rng.fill(right);
}
Trait Implementations§
Source§impl<T> Buf<T> for Sequential<T>
impl<T> Buf<T> for Sequential<T>
Source§fn frames_hint(&self) -> Option<usize>
fn frames_hint(&self) -> Option<usize>
Source§fn channel(&self, channel: usize) -> Channel<'_, T>
fn channel(&self, channel: usize) -> Channel<'_, T>
Source§fn skip(self, n: usize) -> Skip<Self>where
Self: Sized,
fn skip(self, n: usize) -> Skip<Self>where
Self: Sized,
n
frames are skipped. Read moreSource§fn tail(self, n: usize) -> Tail<Self>where
Self: Sized,
fn tail(self, n: usize) -> Tail<Self>where
Self: Sized,
n
frames are skipped. Read more