roan_ast/parser/expressions.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
use crate::{
AssignOperator, BinOpAssociativity, BinOpKind, BinOperator, Expr, ParseContext, Parser, Stmt,
Token, TokenKind, TypeAnnotation, UnOpKind, UnOperator,
};
use indexmap::IndexMap;
use roan_error::error::RoanError::{ExpectedToken, UnexpectedToken};
use tracing::debug;
impl Parser {
/// Parses any expression, starting with an assignment.
///
/// This method serves as the entry point for expression parsing.
///
/// # Returns
/// - `Ok(Expr)`: The parsed expression if successful.
/// - `Err(anyhow::Error)`: An error if parsing fails.
pub fn parse_expr(&mut self) -> anyhow::Result<Expr> {
self.parse_assignment()
}
/// Parses an expression statement.
///
/// This method parses an expression and checks for a semicolon to terminate the statement.
///
/// # Returns
/// - `Ok(Stmt)`: The expression statement if successful.
/// - `Err(anyhow::Error)`: An error if parsing fails.
pub fn expression_stmt(&mut self) -> anyhow::Result<Stmt> {
let expr = self.parse_expr()?;
self.possible_check(TokenKind::Semicolon);
Ok(expr.into())
}
/// Parses a binary expression.
///
/// This method first parses a unary expression and then handles the binary operators in the expression.
///
/// # Returns
/// - `Ok(Expr)`: The parsed binary expression if successful.
/// - `Err(anyhow::Error)`: An error if parsing fails.
pub fn parse_binary_expression(&mut self) -> anyhow::Result<Expr> {
let left = self.parse_unary_expression()?;
self.parse_binary_expression_recurse(left, 0)
}
/// Attempts to parse a binary operator.
///
/// This method checks the next token to see if it's a binary operator and returns it if found.
///
/// # Returns
/// - `Some(BinOperator)`: The parsed binary operator if found.
/// - `None`: If no binary operator is found.
fn parse_binary_operator(&mut self) -> Option<BinOperator> {
let token = self.peek();
let kind = match token.kind {
TokenKind::Plus => Some(BinOpKind::Plus),
TokenKind::Minus => Some(BinOpKind::Minus),
TokenKind::Asterisk => Some(BinOpKind::Multiply),
TokenKind::Slash => Some(BinOpKind::Divide),
TokenKind::Ampersand => Some(BinOpKind::BitwiseAnd),
TokenKind::Pipe => Some(BinOpKind::BitwiseOr),
TokenKind::Caret => Some(BinOpKind::BitwiseXor),
TokenKind::DoubleAsterisk => Some(BinOpKind::Power),
TokenKind::EqualsEquals => Some(BinOpKind::Equals),
TokenKind::BangEquals => Some(BinOpKind::BangEquals),
TokenKind::LessThan => Some(BinOpKind::LessThan),
TokenKind::LessThanEquals => Some(BinOpKind::LessThanOrEqual),
TokenKind::GreaterThan => Some(BinOpKind::GreaterThan),
TokenKind::GreaterThanEquals => Some(BinOpKind::GreaterThanOrEqual),
TokenKind::Percent => Some(BinOpKind::Modulo),
TokenKind::And => Some(BinOpKind::And),
TokenKind::Or => Some(BinOpKind::Or),
TokenKind::Increment => Some(BinOpKind::Increment),
TokenKind::Decrement => Some(BinOpKind::Decrement),
TokenKind::DoubleGreaterThan => Some(BinOpKind::ShiftRight),
TokenKind::DoubleLessThan => Some(BinOpKind::ShiftLeft),
_ => None,
};
kind.map(|kind| BinOperator::new(kind, token.clone()))
}
/// Parses binary expressions recursively, handling operator precedence and associativity.
///
/// This method continues to parse binary expressions until no further valid operators are found.
///
/// # Parameters
/// - `left`: The left-hand side expression.
/// - `precedence`: The precedence of the operator being processed.
///
/// # Returns
/// - `Ok(Expr)`: The final parsed expression if successful.
/// - `Err(anyhow::Error)`: An error if parsing fails.
pub fn parse_binary_expression_recurse(
&mut self,
mut left: Expr,
precedence: u8,
) -> anyhow::Result<Expr> {
while let Some(operator) = self.parse_binary_operator() {
let operator_precedence = operator.precedence();
if operator_precedence < precedence {
break;
}
self.consume();
let mut right = self.parse_unary_expression()?;
while let Some(next_operator) = self.parse_binary_operator() {
let next_precedence = next_operator.precedence();
if next_precedence > operator_precedence
|| (next_precedence == operator_precedence
&& next_operator.associativity() == BinOpAssociativity::Right)
{
right = self.parse_binary_expression_recurse(right, next_precedence)?;
} else {
break;
}
}
left = Expr::new_binary(left, operator, right);
}
Ok(left)
}
/// Attempts to parse a unary operator.
///
/// This method checks the next token to see if it's a unary operator and returns it if found.
///
/// # Returns
/// - `Some(UnOperator)`: The parsed unary operator if found.
/// - `None`: If no unary operator is found.
pub fn parse_unary_operator(&mut self) -> Option<UnOperator> {
let token = self.peek();
let kind = match token.kind {
TokenKind::Minus => Some(UnOpKind::Minus),
TokenKind::Tilde => Some(UnOpKind::BitwiseNot),
TokenKind::Bang => Some(UnOpKind::LogicalNot),
_ => None,
};
kind.map(|kind| UnOperator::new(kind, token.clone()))
}
/// Parses a unary expression, handling unary operators.
///
/// This method checks for a unary operator and processes the operand accordingly.
///
/// # Returns
/// - `Ok(Expr)`: The parsed unary expression if successful.
/// - `Err(anyhow::Error)`: An error if parsing fails.
pub fn parse_unary_expression(&mut self) -> anyhow::Result<Expr> {
if let Some(operator) = self.parse_unary_operator() {
let token = self.consume();
let operand = self.parse_unary_expression()?;
return Ok(Expr::new_unary(operator, operand, token));
}
self.parse_access_expression()
}
/// Parses an access expression.
pub fn parse_access_expression(&mut self) -> anyhow::Result<Expr> {
debug!("Parsing access expression");
let mut expr = self.parse_primary_expression()?;
let mut token = self.peek();
loop {
if token.kind == TokenKind::Dot {
self.consume();
let field_token = self.consume();
let mut field_expr = Expr::new_variable(field_token.clone(), field_token.literal());
if self.peek().kind == TokenKind::LeftParen {
field_expr = self.parse_call_expr(field_token)?;
}
expr = Expr::new_field_access(expr, field_expr, token);
} else if token.kind == TokenKind::LeftBracket {
self.consume();
let index = self.parse_expr()?;
self.expect(TokenKind::RightBracket)?;
expr = Expr::new_index_access(expr, index, token);
} else if token.kind == TokenKind::DoubleColon {
let colons = self.consume();
let field = self.parse_expr()?;
expr = Expr::new_static_method_access(expr, field, colons);
} else {
break;
}
token = self.peek();
}
Ok(expr)
}
/// Parses a struct constructor expression.
///
/// This method expects an identifier followed by a left brace and a list of field assignments.
///
/// # Parameters
/// - `identifier`: The token representing the struct name.
///
/// # Returns
/// - `Ok(Expr)`: The parsed struct constructor expression if successful.
/// - `Err(anyhow::Error)`: An error if parsing fails.
pub fn parse_struct_constructor(&mut self, identifier: Token) -> anyhow::Result<Expr> {
self.expect(TokenKind::LeftBrace)?;
let mut fields = vec![];
while self.peek().kind != TokenKind::RightBrace && !self.is_eof() {
let field_name = self.consume();
self.expect(TokenKind::Colon)?;
let field_value = self.parse_expr()?;
fields.push((field_name.literal(), field_value));
if self.peek().kind != TokenKind::RightBrace {
self.expect(TokenKind::Comma)?;
}
}
self.expect(TokenKind::RightBrace)?;
Ok(Expr::new_struct_constructor(
identifier.literal(),
fields,
identifier,
))
}
/// Parses a primary expression, such as literals, identifiers, or parenthesized expressions.
///
/// # Returns
/// - `Ok(Expr)`: The parsed primary expression if successful.
/// - `Err(anyhow::Error)`: An error if parsing fails.
pub fn parse_primary_expression(&mut self) -> anyhow::Result<Expr> {
let token = self.consume();
match &token.kind {
TokenKind::Integer(int) => Ok(Expr::new_integer(token.clone(), *int)),
TokenKind::Float(float) => Ok(Expr::new_float(token.clone(), *float)),
TokenKind::Null => Ok(Expr::new_null(token)),
TokenKind::True | TokenKind::False => {
Ok(Expr::new_bool(token.clone(), token.as_bool().unwrap()))
}
TokenKind::TripleDot => Ok(Expr::new_spread(token.clone(), self.parse_expr()?)),
TokenKind::LeftBracket => self.parse_vector(),
TokenKind::LeftBrace => {
let mut fields: IndexMap<String, Expr> = IndexMap::new();
while self.peek().kind != TokenKind::RightBrace && !self.is_eof() {
let field_name = {
if matches!(self.peek().kind, TokenKind::String(_)) {
self.consume()
} else {
return Err(ExpectedToken(
"string literal".to_string(),
"Field names in objects must be string literals.".to_string(),
self.peek().span.clone(),
)
.into());
}
};
self.expect(TokenKind::Colon)?;
let field_value = self.parse_expr()?;
fields.insert(
field_name
.literal()
.strip_prefix("\"")
.unwrap()
.strip_suffix("\"")
.unwrap()
.to_string(),
field_value,
);
if self.peek().kind != TokenKind::RightBrace {
self.expect(TokenKind::Comma)?;
}
}
let closing_brace = self.expect(TokenKind::RightBrace)?;
Ok(Expr::new_object(fields, (token, closing_brace)))
}
TokenKind::Identifier => {
debug!("Parsing identifier: {}", token.literal());
if self.peek().kind == TokenKind::LeftParen {
self.parse_call_expr(token)
} else if self.peek().kind == TokenKind::LeftBrace {
if self.is_context(&ParseContext::Normal) {
self.parse_struct_constructor(token)
} else {
Ok(Expr::new_variable(token.clone(), token.literal()))
}
} else {
Ok(Expr::new_variable(token.clone(), token.literal()))
}
}
TokenKind::LeftParen => {
let expr = self.parse_expr()?;
self.expect(TokenKind::RightParen)?;
Ok(Expr::new_parenthesized(expr))
}
TokenKind::String(s) => Ok(Expr::new_string(token.clone(), s.clone())),
TokenKind::Char(c) => Ok(Expr::new_char(token.clone(), *c)),
_ => {
debug!("Unexpected token: {:?}", token);
Err(UnexpectedToken(token.kind.to_string(), token.span.clone()).into())
}
}
}
/// Parses a then-else expression.
///
/// This method expects an identifier followed by a then keyword and two expressions.
///
/// # Parameters
/// - `identifier`: The token representing the identifier.
///
/// # Returns
/// - `Ok(Expr)`: The parsed then-else expression if successful.
/// - `Err(anyhow::Error)`: An error if parsing fails.
pub fn parse_then_else_expr(&mut self, condition: Expr) -> anyhow::Result<Expr> {
debug!("Parsing then-else expression");
let then_token = self.expect(TokenKind::Then)?;
let then_expr = self.parse_expr()?;
let else_token = self.expect(TokenKind::Else)?;
let else_expr = self.parse_expr()?;
Ok(Expr::new_then_else(
condition, then_expr, else_expr, then_token, else_token,
))
}
/// Parses a function call expression.
///
/// This method expects an identifier followed by parentheses containing arguments.
///
/// # Parameters
/// - `callee`: The token representing the function name.
///
/// # Returns
/// - `Ok(Expr)`: The parsed call expression if successful.
/// - `Err(anyhow::Error)`: An error if parsing fails.
pub fn parse_call_expr(&mut self, callee: Token) -> anyhow::Result<Expr> {
self.expect(TokenKind::LeftParen)?;
let mut args = vec![];
if self.peek().kind != TokenKind::RightParen {
while self.peek().kind != TokenKind::RightParen && !self.is_eof() {
let arg = self.parse_expr()?;
args.push(arg);
if self.peek().kind != TokenKind::RightParen {
self.expect(TokenKind::Comma)?;
}
}
}
self.expect(TokenKind::RightParen)?;
Ok(Expr::new_call(callee.literal(), args, callee))
}
/// Parses an optional type annotation.
///
/// This method checks for a colon followed by a type annotation and parses it if present.
///
/// # Returns
/// - `Ok(Some(TypeAnnotation))`: The parsed type annotation if present.
/// - `Ok(None)`: If no type annotation is present.
pub fn parse_optional_type_annotation(&mut self) -> anyhow::Result<Option<TypeAnnotation>> {
if self.peek().kind == TokenKind::Colon {
Ok(Some(self.parse_type_annotation()?))
} else {
Ok(None)
}
}
/// Parses a vector expression.
///
/// This method expects a left bracket followed by a list of expressions and a closing right bracket.
///
/// # Returns
/// - `Ok(Expr)`: The parsed vector expression if successful.
/// - `Err(anyhow::Error)`: An error if parsing fails.
pub fn parse_vector(&mut self) -> anyhow::Result<Expr> {
debug!("Parsing vector");
let mut elements = vec![];
if self.peek().kind != TokenKind::RightBracket {
while self.peek().kind != TokenKind::RightBracket && !self.is_eof() {
let arg = self.parse_expr()?;
elements.push(arg);
if self.peek().kind != TokenKind::RightBracket {
self.expect(TokenKind::Comma)?;
}
}
}
self.expect(TokenKind::RightBracket)?;
Ok(Expr::new_vec(elements))
}
/// Parses an assignment expression.
///
/// This method checks for an identifier followed by an equals sign and an expression.
///
/// # Returns
/// - `Ok(Expr)`: The parsed assignment expression if successful.
/// - `Err(anyhow::Error)`: An error if parsing fails.
pub fn parse_assignment(&mut self) -> anyhow::Result<Expr> {
tracing::debug!("Parsing assignment");
let expr = self.parse_binary_expression()?;
if let Some(assign_op) = self.parse_assignment_operator() {
self.consume();
let right = self.parse_expr()?;
let operator = AssignOperator::from_token_kind(assign_op);
return Ok(Expr::new_assign(expr, operator, right));
} else if self.peek().kind == TokenKind::Then {
return self.parse_then_else_expr(expr);
}
Ok(expr)
}
/// Attempts to parse an assignment operator.
///
/// This method checks the next token to see if it's an assignment operator and returns it if found.
///
/// # Returns
/// - `Some(TokenKind)`: The parsed assignment operator if found.
/// - `None`: If no assignment operator is found.
fn parse_assignment_operator(&mut self) -> Option<TokenKind> {
match self.peek().kind {
TokenKind::Equals
| TokenKind::PlusEquals
| TokenKind::MinusEquals
| TokenKind::MultiplyEquals
| TokenKind::DivideEquals => Some(self.peek().kind.clone()),
_ => None,
}
}
}