roan_ast/parser/
expressions.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
use crate::{
    AssignOperator, BinOpAssociativity, BinOpKind, BinOperator, Expr, ParseContext, Parser, Stmt,
    Token, TokenKind, TypeAnnotation, UnOpKind, UnOperator,
};
use indexmap::IndexMap;
use roan_error::error::RoanError::{ExpectedToken, UnexpectedToken};
use tracing::debug;

impl Parser {
    /// Parses any expression, starting with an assignment.
    ///
    /// This method serves as the entry point for expression parsing.
    ///
    /// # Returns
    /// - `Ok(Expr)`: The parsed expression if successful.
    /// - `Err(anyhow::Error)`: An error if parsing fails.
    pub fn parse_expr(&mut self) -> anyhow::Result<Expr> {
        self.parse_assignment()
    }

    /// Parses an expression statement.
    ///
    /// This method parses an expression and checks for a semicolon to terminate the statement.
    ///
    /// # Returns
    /// - `Ok(Stmt)`: The expression statement if successful.
    /// - `Err(anyhow::Error)`: An error if parsing fails.
    pub fn expression_stmt(&mut self) -> anyhow::Result<Stmt> {
        let expr = self.parse_expr()?;

        self.possible_check(TokenKind::Semicolon);

        Ok(expr.into())
    }

    /// Parses a binary expression.
    ///
    /// This method first parses a unary expression and then handles the binary operators in the expression.
    ///
    /// # Returns
    /// - `Ok(Expr)`: The parsed binary expression if successful.
    /// - `Err(anyhow::Error)`: An error if parsing fails.
    pub fn parse_binary_expression(&mut self) -> anyhow::Result<Expr> {
        let left = self.parse_unary_expression()?;
        self.parse_binary_expression_recurse(left, 0)
    }

    /// Attempts to parse a binary operator.
    ///
    /// This method checks the next token to see if it's a binary operator and returns it if found.
    ///
    /// # Returns
    /// - `Some(BinOperator)`: The parsed binary operator if found.
    /// - `None`: If no binary operator is found.
    fn parse_binary_operator(&mut self) -> Option<BinOperator> {
        let token = self.peek();
        let kind = match token.kind {
            TokenKind::Plus => Some(BinOpKind::Plus),
            TokenKind::Minus => Some(BinOpKind::Minus),
            TokenKind::Asterisk => Some(BinOpKind::Multiply),
            TokenKind::Slash => Some(BinOpKind::Divide),
            TokenKind::Ampersand => Some(BinOpKind::BitwiseAnd),
            TokenKind::Pipe => Some(BinOpKind::BitwiseOr),
            TokenKind::Caret => Some(BinOpKind::BitwiseXor),
            TokenKind::DoubleAsterisk => Some(BinOpKind::Power),
            TokenKind::EqualsEquals => Some(BinOpKind::Equals),
            TokenKind::BangEquals => Some(BinOpKind::BangEquals),
            TokenKind::LessThan => Some(BinOpKind::LessThan),
            TokenKind::LessThanEquals => Some(BinOpKind::LessThanOrEqual),
            TokenKind::GreaterThan => Some(BinOpKind::GreaterThan),
            TokenKind::GreaterThanEquals => Some(BinOpKind::GreaterThanOrEqual),
            TokenKind::Percent => Some(BinOpKind::Modulo),
            TokenKind::And => Some(BinOpKind::And),
            TokenKind::Or => Some(BinOpKind::Or),
            TokenKind::Increment => Some(BinOpKind::Increment),
            TokenKind::Decrement => Some(BinOpKind::Decrement),
            TokenKind::DoubleGreaterThan => Some(BinOpKind::ShiftRight),
            TokenKind::DoubleLessThan => Some(BinOpKind::ShiftLeft),
            _ => None,
        };
        kind.map(|kind| BinOperator::new(kind, token.clone()))
    }

    /// Parses binary expressions recursively, handling operator precedence and associativity.
    ///
    /// This method continues to parse binary expressions until no further valid operators are found.
    ///
    /// # Parameters
    /// - `left`: The left-hand side expression.
    /// - `precedence`: The precedence of the operator being processed.
    ///
    /// # Returns
    /// - `Ok(Expr)`: The final parsed expression if successful.
    /// - `Err(anyhow::Error)`: An error if parsing fails.
    pub fn parse_binary_expression_recurse(
        &mut self,
        mut left: Expr,
        precedence: u8,
    ) -> anyhow::Result<Expr> {
        while let Some(operator) = self.parse_binary_operator() {
            let operator_precedence = operator.precedence();
            if operator_precedence < precedence {
                break;
            }

            self.consume();

            let mut right = self.parse_unary_expression()?;

            while let Some(next_operator) = self.parse_binary_operator() {
                let next_precedence = next_operator.precedence();

                if next_precedence > operator_precedence
                    || (next_precedence == operator_precedence
                        && next_operator.associativity() == BinOpAssociativity::Right)
                {
                    right = self.parse_binary_expression_recurse(right, next_precedence)?;
                } else {
                    break;
                }
            }

            left = Expr::new_binary(left, operator, right);
        }

        Ok(left)
    }

    /// Attempts to parse a unary operator.
    ///
    /// This method checks the next token to see if it's a unary operator and returns it if found.
    ///
    /// # Returns
    /// - `Some(UnOperator)`: The parsed unary operator if found.
    /// - `None`: If no unary operator is found.
    pub fn parse_unary_operator(&mut self) -> Option<UnOperator> {
        let token = self.peek();
        let kind = match token.kind {
            TokenKind::Minus => Some(UnOpKind::Minus),
            TokenKind::Tilde => Some(UnOpKind::BitwiseNot),
            TokenKind::Bang => Some(UnOpKind::LogicalNot),
            _ => None,
        };
        kind.map(|kind| UnOperator::new(kind, token.clone()))
    }

    /// Parses a unary expression, handling unary operators.
    ///
    /// This method checks for a unary operator and processes the operand accordingly.
    ///
    /// # Returns
    /// - `Ok(Expr)`: The parsed unary expression if successful.
    /// - `Err(anyhow::Error)`: An error if parsing fails.
    pub fn parse_unary_expression(&mut self) -> anyhow::Result<Expr> {
        if let Some(operator) = self.parse_unary_operator() {
            let token = self.consume();
            let operand = self.parse_unary_expression()?;
            return Ok(Expr::new_unary(operator, operand, token));
        }
        self.parse_access_expression()
    }

    /// Parses an access expression.
    pub fn parse_access_expression(&mut self) -> anyhow::Result<Expr> {
        debug!("Parsing access expression");
        let mut expr = self.parse_primary_expression()?;
        let mut token = self.peek();

        loop {
            if token.kind == TokenKind::Dot {
                self.consume();

                let field_token = self.consume();
                let mut field_expr = Expr::new_variable(field_token.clone(), field_token.literal());

                if self.peek().kind == TokenKind::LeftParen {
                    field_expr = self.parse_call_expr(field_token)?;
                }

                expr = Expr::new_field_access(expr, field_expr, token);
            } else if token.kind == TokenKind::LeftBracket {
                self.consume();
                let index = self.parse_expr()?;
                self.expect(TokenKind::RightBracket)?;
                expr = Expr::new_index_access(expr, index, token);
            } else if token.kind == TokenKind::DoubleColon {
                let colons = self.consume();
                let field = self.parse_expr()?;

                expr = Expr::new_static_method_access(expr, field, colons);
            } else {
                break;
            }
            token = self.peek();
        }

        Ok(expr)
    }

    /// Parses a struct constructor expression.
    ///
    /// This method expects an identifier followed by a left brace and a list of field assignments.
    ///
    /// # Parameters
    /// - `identifier`: The token representing the struct name.
    ///
    /// # Returns
    /// - `Ok(Expr)`: The parsed struct constructor expression if successful.
    /// - `Err(anyhow::Error)`: An error if parsing fails.
    pub fn parse_struct_constructor(&mut self, identifier: Token) -> anyhow::Result<Expr> {
        self.expect(TokenKind::LeftBrace)?;

        let mut fields = vec![];

        while self.peek().kind != TokenKind::RightBrace && !self.is_eof() {
            let field_name = self.consume();
            self.expect(TokenKind::Colon)?;
            let field_value = self.parse_expr()?;

            fields.push((field_name.literal(), field_value));

            if self.peek().kind != TokenKind::RightBrace {
                self.expect(TokenKind::Comma)?;
            }
        }

        self.expect(TokenKind::RightBrace)?;

        Ok(Expr::new_struct_constructor(
            identifier.literal(),
            fields,
            identifier,
        ))
    }

    /// Parses a primary expression, such as literals, identifiers, or parenthesized expressions.
    ///
    /// # Returns
    /// - `Ok(Expr)`: The parsed primary expression if successful.
    /// - `Err(anyhow::Error)`: An error if parsing fails.
    pub fn parse_primary_expression(&mut self) -> anyhow::Result<Expr> {
        let token = self.consume();

        match &token.kind {
            TokenKind::Integer(int) => Ok(Expr::new_integer(token.clone(), *int)),
            TokenKind::Float(float) => Ok(Expr::new_float(token.clone(), *float)),
            TokenKind::Null => Ok(Expr::new_null(token)),
            TokenKind::True | TokenKind::False => {
                Ok(Expr::new_bool(token.clone(), token.as_bool().unwrap()))
            }
            TokenKind::TripleDot => Ok(Expr::new_spread(token.clone(), self.parse_expr()?)),
            TokenKind::LeftBracket => self.parse_vector(),
            TokenKind::LeftBrace => {
                let mut fields: IndexMap<String, Expr> = IndexMap::new();

                while self.peek().kind != TokenKind::RightBrace && !self.is_eof() {
                    let field_name = {
                        if matches!(self.peek().kind, TokenKind::String(_)) {
                            self.consume()
                        } else {
                            return Err(ExpectedToken(
                                "string literal".to_string(),
                                "Field names in objects must be string literals.".to_string(),
                                self.peek().span.clone(),
                            )
                            .into());
                        }
                    };

                    self.expect(TokenKind::Colon)?;
                    let field_value = self.parse_expr()?;

                    fields.insert(
                        field_name
                            .literal()
                            .strip_prefix("\"")
                            .unwrap()
                            .strip_suffix("\"")
                            .unwrap()
                            .to_string(),
                        field_value,
                    );

                    if self.peek().kind != TokenKind::RightBrace {
                        self.expect(TokenKind::Comma)?;
                    }
                }

                let closing_brace = self.expect(TokenKind::RightBrace)?;

                Ok(Expr::new_object(fields, (token, closing_brace)))
            }
            TokenKind::Identifier => {
                debug!("Parsing identifier: {}", token.literal());

                if self.peek().kind == TokenKind::LeftParen {
                    self.parse_call_expr(token)
                } else if self.peek().kind == TokenKind::LeftBrace {
                    if self.is_context(&ParseContext::Normal) {
                        self.parse_struct_constructor(token)
                    } else {
                        Ok(Expr::new_variable(token.clone(), token.literal()))
                    }
                } else {
                    Ok(Expr::new_variable(token.clone(), token.literal()))
                }
            }
            TokenKind::LeftParen => {
                let expr = self.parse_expr()?;

                self.expect(TokenKind::RightParen)?;

                Ok(Expr::new_parenthesized(expr))
            }
            TokenKind::String(s) => Ok(Expr::new_string(token.clone(), s.clone())),
            TokenKind::Char(c) => Ok(Expr::new_char(token.clone(), *c)),
            _ => {
                debug!("Unexpected token: {:?}", token);
                Err(UnexpectedToken(token.kind.to_string(), token.span.clone()).into())
            }
        }
    }

    /// Parses a then-else expression.
    ///
    /// This method expects an identifier followed by a then keyword and two expressions.
    ///
    /// # Parameters
    /// - `identifier`: The token representing the identifier.
    ///
    /// # Returns
    /// - `Ok(Expr)`: The parsed then-else expression if successful.
    /// - `Err(anyhow::Error)`: An error if parsing fails.
    pub fn parse_then_else_expr(&mut self, condition: Expr) -> anyhow::Result<Expr> {
        debug!("Parsing then-else expression");
        let then_token = self.expect(TokenKind::Then)?;

        let then_expr = self.parse_expr()?;
        let else_token = self.expect(TokenKind::Else)?;

        let else_expr = self.parse_expr()?;

        Ok(Expr::new_then_else(
            condition, then_expr, else_expr, then_token, else_token,
        ))
    }

    /// Parses a function call expression.
    ///
    /// This method expects an identifier followed by parentheses containing arguments.
    ///
    /// # Parameters
    /// - `callee`: The token representing the function name.
    ///
    /// # Returns
    /// - `Ok(Expr)`: The parsed call expression if successful.
    /// - `Err(anyhow::Error)`: An error if parsing fails.
    pub fn parse_call_expr(&mut self, callee: Token) -> anyhow::Result<Expr> {
        self.expect(TokenKind::LeftParen)?;

        let mut args = vec![];

        if self.peek().kind != TokenKind::RightParen {
            while self.peek().kind != TokenKind::RightParen && !self.is_eof() {
                let arg = self.parse_expr()?;

                args.push(arg);

                if self.peek().kind != TokenKind::RightParen {
                    self.expect(TokenKind::Comma)?;
                }
            }
        }

        self.expect(TokenKind::RightParen)?;

        Ok(Expr::new_call(callee.literal(), args, callee))
    }

    /// Parses an optional type annotation.
    ///
    /// This method checks for a colon followed by a type annotation and parses it if present.
    ///
    /// # Returns
    /// - `Ok(Some(TypeAnnotation))`: The parsed type annotation if present.
    /// - `Ok(None)`: If no type annotation is present.
    pub fn parse_optional_type_annotation(&mut self) -> anyhow::Result<Option<TypeAnnotation>> {
        if self.peek().kind == TokenKind::Colon {
            Ok(Some(self.parse_type_annotation()?))
        } else {
            Ok(None)
        }
    }

    /// Parses a vector expression.
    ///
    /// This method expects a left bracket followed by a list of expressions and a closing right bracket.
    ///
    /// # Returns
    /// - `Ok(Expr)`: The parsed vector expression if successful.
    /// - `Err(anyhow::Error)`: An error if parsing fails.
    pub fn parse_vector(&mut self) -> anyhow::Result<Expr> {
        debug!("Parsing vector");

        let mut elements = vec![];
        if self.peek().kind != TokenKind::RightBracket {
            while self.peek().kind != TokenKind::RightBracket && !self.is_eof() {
                let arg = self.parse_expr()?;

                elements.push(arg);

                if self.peek().kind != TokenKind::RightBracket {
                    self.expect(TokenKind::Comma)?;
                }
            }
        }

        self.expect(TokenKind::RightBracket)?;

        Ok(Expr::new_vec(elements))
    }

    /// Parses an assignment expression.
    ///
    /// This method checks for an identifier followed by an equals sign and an expression.
    ///
    /// # Returns
    /// - `Ok(Expr)`: The parsed assignment expression if successful.
    /// - `Err(anyhow::Error)`: An error if parsing fails.
    pub fn parse_assignment(&mut self) -> anyhow::Result<Expr> {
        tracing::debug!("Parsing assignment");

        let expr = self.parse_binary_expression()?;
        if let Some(assign_op) = self.parse_assignment_operator() {
            self.consume();
            let right = self.parse_expr()?;

            let operator = AssignOperator::from_token_kind(assign_op);
            return Ok(Expr::new_assign(expr, operator, right));
        } else if self.peek().kind == TokenKind::Then {
            return self.parse_then_else_expr(expr);
        }

        Ok(expr)
    }

    /// Attempts to parse an assignment operator.
    ///
    /// This method checks the next token to see if it's an assignment operator and returns it if found.
    ///
    /// # Returns
    /// - `Some(TokenKind)`: The parsed assignment operator if found.
    /// - `None`: If no assignment operator is found.
    fn parse_assignment_operator(&mut self) -> Option<TokenKind> {
        match self.peek().kind {
            TokenKind::Equals
            | TokenKind::PlusEquals
            | TokenKind::MinusEquals
            | TokenKind::MultiplyEquals
            | TokenKind::DivideEquals => Some(self.peek().kind.clone()),
            _ => None,
        }
    }
}