pub struct BlindingFactor(_);
Expand description

Blinding factor used in creating Pedersen commitment to an [AtomicValue].

Knowledge of the blinding factor is important to reproduce the commitment process if the original value is kept.

Methods from Deref<Target = [u8; 32]>§

source

pub fn as_ascii(&self) -> Option<&[AsciiChar; N]>

🔬This is a nightly-only experimental API. (ascii_char)

Converts this array of bytes into a array of ASCII characters, or returns None if any of the characters is non-ASCII.

Examples
#![feature(ascii_char)]
#![feature(const_option)]

const HEX_DIGITS: [std::ascii::Char; 16] =
    *b"0123456789abcdef".as_ascii().unwrap();

assert_eq!(HEX_DIGITS[1].as_str(), "1");
assert_eq!(HEX_DIGITS[10].as_str(), "a");
source

pub unsafe fn as_ascii_unchecked(&self) -> &[AsciiChar; N]

🔬This is a nightly-only experimental API. (ascii_char)

Converts this array of bytes into a array of ASCII characters, without checking whether they’re valid.

Safety

Every byte in the array must be in 0..=127, or else this is UB.

1.57.0 · source

pub fn as_slice(&self) -> &[T]

Returns a slice containing the entire array. Equivalent to &s[..].

source

pub fn each_ref(&self) -> [&T; N]

🔬This is a nightly-only experimental API. (array_methods)

Borrows each element and returns an array of references with the same size as self.

Example
#![feature(array_methods)]

let floats = [3.1, 2.7, -1.0];
let float_refs: [&f64; 3] = floats.each_ref();
assert_eq!(float_refs, [&3.1, &2.7, &-1.0]);

This method is particularly useful if combined with other methods, like map. This way, you can avoid moving the original array if its elements are not Copy.

#![feature(array_methods)]

let strings = ["Ferris".to_string(), "♥".to_string(), "Rust".to_string()];
let is_ascii = strings.each_ref().map(|s| s.is_ascii());
assert_eq!(is_ascii, [true, false, true]);

// We can still access the original array: it has not been moved.
assert_eq!(strings.len(), 3);
source

pub fn split_array_ref<const M: usize>(&self) -> (&[T; M], &[T])

🔬This is a nightly-only experimental API. (split_array)

Divides one array reference into two at an index.

The first will contain all indices from [0, M) (excluding the index M itself) and the second will contain all indices from [M, N) (excluding the index N itself).

Panics

Panics if M > N.

Examples
#![feature(split_array)]

let v = [1, 2, 3, 4, 5, 6];

{
   let (left, right) = v.split_array_ref::<0>();
   assert_eq!(left, &[]);
   assert_eq!(right, &[1, 2, 3, 4, 5, 6]);
}

{
    let (left, right) = v.split_array_ref::<2>();
    assert_eq!(left, &[1, 2]);
    assert_eq!(right, &[3, 4, 5, 6]);
}

{
    let (left, right) = v.split_array_ref::<6>();
    assert_eq!(left, &[1, 2, 3, 4, 5, 6]);
    assert_eq!(right, &[]);
}
source

pub fn rsplit_array_ref<const M: usize>(&self) -> (&[T], &[T; M])

🔬This is a nightly-only experimental API. (split_array)

Divides one array reference into two at an index from the end.

The first will contain all indices from [0, N - M) (excluding the index N - M itself) and the second will contain all indices from [N - M, N) (excluding the index N itself).

Panics

Panics if M > N.

Examples
#![feature(split_array)]

let v = [1, 2, 3, 4, 5, 6];

{
   let (left, right) = v.rsplit_array_ref::<0>();
   assert_eq!(left, &[1, 2, 3, 4, 5, 6]);
   assert_eq!(right, &[]);
}

{
    let (left, right) = v.rsplit_array_ref::<2>();
    assert_eq!(left, &[1, 2, 3, 4]);
    assert_eq!(right, &[5, 6]);
}

{
    let (left, right) = v.rsplit_array_ref::<6>();
    assert_eq!(left, &[]);
    assert_eq!(right, &[1, 2, 3, 4, 5, 6]);
}

Trait Implementations§

source§

impl Clone for BlindingFactor

source§

fn clone(&self) -> BlindingFactor

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl Debug for BlindingFactor

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
source§

impl Deref for BlindingFactor

§

type Target = [u8; 32]

The resulting type after dereferencing.
source§

fn deref(&self) -> &<BlindingFactor as Deref>::Target

Dereferences the value.
source§

impl<'de> Deserialize<'de> for BlindingFactor

source§

fn deserialize<__D>( __deserializer: __D ) -> Result<BlindingFactor, <__D as Deserializer<'de>>::Error>where __D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
source§

impl Display for BlindingFactor

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
source§

impl From<SecretKey> for BlindingFactor

source§

fn from(key: SecretKey) -> BlindingFactor

Converts to this type from the input type.
source§

impl FromHex for BlindingFactor

source§

fn from_hex(s: &str) -> Result<BlindingFactor, Error>

Produce an object from a hex string
source§

fn from_byte_iter<I>(_: I) -> Result<BlindingFactor, Error>where I: Iterator<Item = Result<u8, Error>> + ExactSizeIterator + DoubleEndedIterator,

Produce an object from a byte iterator
source§

impl FromStr for BlindingFactor

§

type Err = Error

The associated error which can be returned from parsing.
source§

fn from_str(s: &str) -> Result<BlindingFactor, <BlindingFactor as FromStr>::Err>

Parses a string s to return a value of this type. Read more
source§

impl Hash for BlindingFactor

source§

fn hash<__H>(&self, state: &mut __H)where __H: Hasher,

Feeds this value into the given Hasher. Read more
1.3.0 · source§

fn hash_slice<H>(data: &[Self], state: &mut H)where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
source§

impl Ord for BlindingFactor

source§

fn cmp(&self, other: &BlindingFactor) -> Ordering

This method returns an Ordering between self and other. Read more
1.21.0 · source§

fn max(self, other: Self) -> Selfwhere Self: Sized,

Compares and returns the maximum of two values. Read more
1.21.0 · source§

fn min(self, other: Self) -> Selfwhere Self: Sized,

Compares and returns the minimum of two values. Read more
1.50.0 · source§

fn clamp(self, min: Self, max: Self) -> Selfwhere Self: Sized + PartialOrd<Self>,

Restrict a value to a certain interval. Read more
source§

impl PartialEq<BlindingFactor> for BlindingFactor

source§

fn eq(&self, other: &BlindingFactor) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl PartialOrd<BlindingFactor> for BlindingFactor

source§

fn partial_cmp(&self, other: &BlindingFactor) -> Option<Ordering>

This method returns an ordering between self and other values if one exists. Read more
1.0.0 · source§

fn lt(&self, other: &Rhs) -> bool

This method tests less than (for self and other) and is used by the < operator. Read more
1.0.0 · source§

fn le(&self, other: &Rhs) -> bool

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
1.0.0 · source§

fn gt(&self, other: &Rhs) -> bool

This method tests greater than (for self and other) and is used by the > operator. Read more
1.0.0 · source§

fn ge(&self, other: &Rhs) -> bool

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
source§

impl Serialize for BlindingFactor

source§

fn serialize<__S>( &self, __serializer: __S ) -> Result<<__S as Serializer>::Ok, <__S as Serializer>::Error>where __S: Serializer,

Serialize this value into the given Serde serializer. Read more
source§

impl StrictDecode for BlindingFactor

source§

impl StrictDumb for BlindingFactor

source§

impl StrictEncode for BlindingFactor

source§

fn strict_encode<W>(&self, writer: W) -> Result<W, Error>where W: TypedWrite,

source§

impl StrictTuple for BlindingFactor

source§

impl StrictType for BlindingFactor

source§

const STRICT_LIB_NAME: &'static str = LIB_NAME_RGB

source§

fn strict_name() -> Option<TypeName>

source§

impl ToHex for BlindingFactor

source§

fn to_hex(&self) -> String

Hex representation of the object
source§

impl TryFrom<[u8; 32]> for BlindingFactor

§

type Error = FieldOrderOverflow

The type returned in the event of a conversion error.
source§

fn try_from( array: [u8; 32] ) -> Result<BlindingFactor, <BlindingFactor as TryFrom<[u8; 32]>>::Error>

Performs the conversion.
source§

impl Copy for BlindingFactor

source§

impl Eq for BlindingFactor

source§

impl StrictProduct for BlindingFactor

source§

impl StructuralEq for BlindingFactor

source§

impl StructuralPartialEq for BlindingFactor

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for Twhere T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for Twhere T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for Twhere T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<Q, K> Equivalent<K> for Qwhere Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

source§

fn equivalent(&self, key: &K) -> bool

Compare self to key and return true if they are equal.
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for Twhere U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> ToOwned for Twhere T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T> ToString for Twhere T: Display + ?Sized,

source§

default fn to_string(&self) -> String

Converts the given value to a String. Read more
source§

impl<T, U> TryFrom<U> for Twhere U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for Twhere U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<V, T> VZip<V> for Twhere V: MultiLane<T>,

§

fn vzip(self) -> V

source§

impl<T> VerifyEq for Twhere T: Eq,

source§

fn verify_eq(&self, other: &T) -> bool

Verifies commit-equivalence of two instances of the same type.
source§

impl<T> DeserializeOwned for Twhere T: for<'de> Deserialize<'de>,