pub struct QR<T, R, C>where
T: ComplexField,
R: DimMin<C>,
C: Dim,
DefaultAllocator: Allocator<R, C> + Allocator<<R as DimMin<C>>::Output>,{ /* private fields */ }
Expand description
The QR decomposition of a general matrix.
Implementations§
Source§impl<T, R, C> QR<T, R, C>where
T: ComplexField,
R: DimMin<C>,
C: Dim,
DefaultAllocator: Allocator<R, C> + Allocator<R> + Allocator<<R as DimMin<C>>::Output>,
impl<T, R, C> QR<T, R, C>where
T: ComplexField,
R: DimMin<C>,
C: Dim,
DefaultAllocator: Allocator<R, C> + Allocator<R> + Allocator<<R as DimMin<C>>::Output>,
Sourcepub fn new(
matrix: Matrix<T, R, C, <DefaultAllocator as Allocator<R, C>>::Buffer<T>>,
) -> QR<T, R, C>
pub fn new( matrix: Matrix<T, R, C, <DefaultAllocator as Allocator<R, C>>::Buffer<T>>, ) -> QR<T, R, C>
Computes the QR decomposition using householder reflections.
Sourcepub fn r(
&self,
) -> Matrix<T, <R as DimMin<C>>::Output, C, <DefaultAllocator as Allocator<<R as DimMin<C>>::Output, C>>::Buffer<T>>
pub fn r( &self, ) -> Matrix<T, <R as DimMin<C>>::Output, C, <DefaultAllocator as Allocator<<R as DimMin<C>>::Output, C>>::Buffer<T>>
Retrieves the upper trapezoidal submatrix R
of this decomposition.
Sourcepub fn unpack_r(
self,
) -> Matrix<T, <R as DimMin<C>>::Output, C, <DefaultAllocator as Allocator<<R as DimMin<C>>::Output, C>>::Buffer<T>>
pub fn unpack_r( self, ) -> Matrix<T, <R as DimMin<C>>::Output, C, <DefaultAllocator as Allocator<<R as DimMin<C>>::Output, C>>::Buffer<T>>
Retrieves the upper trapezoidal submatrix R
of this decomposition.
This is usually faster than r
but consumes self
.
Sourcepub fn q(
&self,
) -> Matrix<T, R, <R as DimMin<C>>::Output, <DefaultAllocator as Allocator<R, <R as DimMin<C>>::Output>>::Buffer<T>>
pub fn q( &self, ) -> Matrix<T, R, <R as DimMin<C>>::Output, <DefaultAllocator as Allocator<R, <R as DimMin<C>>::Output>>::Buffer<T>>
Computes the orthogonal matrix Q
of this decomposition.
Sourcepub fn unpack(
self,
) -> (Matrix<T, R, <R as DimMin<C>>::Output, <DefaultAllocator as Allocator<R, <R as DimMin<C>>::Output>>::Buffer<T>>, Matrix<T, <R as DimMin<C>>::Output, C, <DefaultAllocator as Allocator<<R as DimMin<C>>::Output, C>>::Buffer<T>>)
pub fn unpack( self, ) -> (Matrix<T, R, <R as DimMin<C>>::Output, <DefaultAllocator as Allocator<R, <R as DimMin<C>>::Output>>::Buffer<T>>, Matrix<T, <R as DimMin<C>>::Output, C, <DefaultAllocator as Allocator<<R as DimMin<C>>::Output, C>>::Buffer<T>>)
Unpacks this decomposition into its two matrix factors.
Source§impl<T, D> QR<T, D, D>
impl<T, D> QR<T, D, D>
Sourcepub fn solve<R2, C2, S2>(
&self,
b: &Matrix<T, R2, C2, S2>,
) -> Option<Matrix<T, R2, C2, <DefaultAllocator as Allocator<R2, C2>>::Buffer<T>>>where
R2: Dim,
C2: Dim,
S2: Storage<T, R2, C2>,
ShapeConstraint: SameNumberOfRows<R2, D>,
DefaultAllocator: Allocator<R2, C2>,
pub fn solve<R2, C2, S2>(
&self,
b: &Matrix<T, R2, C2, S2>,
) -> Option<Matrix<T, R2, C2, <DefaultAllocator as Allocator<R2, C2>>::Buffer<T>>>where
R2: Dim,
C2: Dim,
S2: Storage<T, R2, C2>,
ShapeConstraint: SameNumberOfRows<R2, D>,
DefaultAllocator: Allocator<R2, C2>,
Solves the linear system self * x = b
, where x
is the unknown to be determined.
Returns None
if self
is not invertible.
Sourcepub fn solve_mut<R2, C2, S2>(&self, b: &mut Matrix<T, R2, C2, S2>) -> bool
pub fn solve_mut<R2, C2, S2>(&self, b: &mut Matrix<T, R2, C2, S2>) -> bool
Solves the linear system self * x = b
, where x
is the unknown to be determined.
If the decomposed matrix is not invertible, this returns false
and its input b
is
overwritten with garbage.
Sourcepub fn try_inverse(
&self,
) -> Option<Matrix<T, D, D, <DefaultAllocator as Allocator<D, D>>::Buffer<T>>>
pub fn try_inverse( &self, ) -> Option<Matrix<T, D, D, <DefaultAllocator as Allocator<D, D>>::Buffer<T>>>
Computes the inverse of the decomposed matrix.
Returns None
if the decomposed matrix is not invertible.
Sourcepub fn is_invertible(&self) -> bool
pub fn is_invertible(&self) -> bool
Indicates if the decomposed matrix is invertible.
Trait Implementations§
impl<T, R, C> Copy for QR<T, R, C>where
T: ComplexField,
R: DimMin<C>,
C: Dim,
DefaultAllocator: Allocator<R, C> + Allocator<<R as DimMin<C>>::Output>,
Matrix<T, R, C, <DefaultAllocator as Allocator<R, C>>::Buffer<T>>: Copy,
Matrix<T, <R as DimMin<C>>::Output, Const<1>, <DefaultAllocator as Allocator<<R as DimMin<C>>::Output>>::Buffer<T>>: Copy,
Auto Trait Implementations§
impl<T, R, C> !Freeze for QR<T, R, C>
impl<T, R, C> !RefUnwindSafe for QR<T, R, C>
impl<T, R, C> !Send for QR<T, R, C>
impl<T, R, C> !Sync for QR<T, R, C>
impl<T, R, C> !Unpin for QR<T, R, C>
impl<T, R, C> !UnwindSafe for QR<T, R, C>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self
from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self
is actually part of its subset T
(and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset
but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self
to the equivalent element of its superset.