Struct reverie_engine_opengl::math::nalgebra::Schur
source · pub struct Schur<T, D>{ /* private fields */ }
Expand description
Schur decomposition of a square matrix.
If this is a real matrix, this will be a RealField
Schur decomposition.
Implementations§
source§impl<T, D> Schur<T, D>
impl<T, D> Schur<T, D>
sourcepub fn new(
m: Matrix<T, D, D, <DefaultAllocator as Allocator<T, D, D>>::Buffer>
) -> Schur<T, D>
pub fn new( m: Matrix<T, D, D, <DefaultAllocator as Allocator<T, D, D>>::Buffer> ) -> Schur<T, D>
Computes the Schur decomposition of a square matrix.
sourcepub fn try_new(
m: Matrix<T, D, D, <DefaultAllocator as Allocator<T, D, D>>::Buffer>,
eps: <T as ComplexField>::RealField,
max_niter: usize
) -> Option<Schur<T, D>>
pub fn try_new( m: Matrix<T, D, D, <DefaultAllocator as Allocator<T, D, D>>::Buffer>, eps: <T as ComplexField>::RealField, max_niter: usize ) -> Option<Schur<T, D>>
Attempts to compute the Schur decomposition of a square matrix.
If only eigenvalues are needed, it is more efficient to call the matrix method
.eigenvalues()
instead.
§Arguments
eps
− tolerance used to determine when a value converged to 0.max_niter
− maximum total number of iterations performed by the algorithm. If this number of iteration is exceeded,None
is returned. Ifniter == 0
, then the algorithm continues indefinitely until convergence.
sourcepub fn unpack(
self
) -> (Matrix<T, D, D, <DefaultAllocator as Allocator<T, D, D>>::Buffer>, Matrix<T, D, D, <DefaultAllocator as Allocator<T, D, D>>::Buffer>)
pub fn unpack( self ) -> (Matrix<T, D, D, <DefaultAllocator as Allocator<T, D, D>>::Buffer>, Matrix<T, D, D, <DefaultAllocator as Allocator<T, D, D>>::Buffer>)
Retrieves the unitary matrix Q
and the upper-quasitriangular matrix T
such that the
decomposed matrix equals Q * T * Q.transpose()
.
sourcepub fn eigenvalues(
&self
) -> Option<Matrix<T, D, Const<1>, <DefaultAllocator as Allocator<T, D>>::Buffer>>
pub fn eigenvalues( &self ) -> Option<Matrix<T, D, Const<1>, <DefaultAllocator as Allocator<T, D>>::Buffer>>
Computes the real eigenvalues of the decomposed matrix.
Return None
if some eigenvalues are complex.
sourcepub fn complex_eigenvalues(
&self
) -> Matrix<Complex<T>, D, Const<1>, <DefaultAllocator as Allocator<Complex<T>, D>>::Buffer>
pub fn complex_eigenvalues( &self ) -> Matrix<Complex<T>, D, Const<1>, <DefaultAllocator as Allocator<Complex<T>, D>>::Buffer>
Computes the complex eigenvalues of the decomposed matrix.
Trait Implementations§
impl<T, D> Copy for Schur<T, D>where
T: ComplexField,
D: Dim,
DefaultAllocator: Allocator<T, D, D>,
Matrix<T, D, D, <DefaultAllocator as Allocator<T, D, D>>::Buffer>: Copy,
Auto Trait Implementations§
impl<T, D> !Freeze for Schur<T, D>
impl<T, D> !RefUnwindSafe for Schur<T, D>
impl<T, D> !Send for Schur<T, D>
impl<T, D> !Sync for Schur<T, D>
impl<T, D> !Unpin for Schur<T, D>
impl<T, D> !UnwindSafe for Schur<T, D>
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read moresource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.