#[repr(C)]pub struct Str<const N: usize> { /* private fields */ }Expand description
A fixed sized stack string
Str is a generic stack-based string with a maximum byte length of u8::MAX.
The generic N is a usize and represents the maximum length of the string,
however all constructor functions for Str will panic at compile time if N > 255.
§Size
The internal length is stored as a u8, and as such will
take minimal space, allowing for longer strings to be stored.
Due to #[repr(C)], N + 1 is how many bytes your Str will take up.
Using Str in powers of 2 is recommended.
// 64 bytes in total, 63 bytes available for the string.
// This will fit in a typical CPU cache-line.
assert_eq!(std::mem::size_of::<Str::<63>>(), 64);
// Maximum string length of 255 fits into 256 bytes.
assert_eq!(std::mem::size_of::<Str::<255>>(), 256);
// Beware, due to `#[repr(C)]`, `Str` is not
// automatically re-arranged and padded by Rust.
assert_eq!(std::mem::size_of::<Str::<6>>(), 7);§Compile-time panic
Any usage of Str will panic at compile time if N > 255:
/// These will all panic at _compile time_
Str::<256>::new();
Str::<256>::try_from("");
Str::<256>::from_static_str("");
Str::<256>::from_static_bytes(b"");§Usage
// Create a `Str` with a maximum capacity of `24` bytes.
const N: usize = 24;
let mut string = Str::<N>::new();
assert!(string.is_empty());
// Copy the bytes from an actual `str`
let other_str = "this str is 24 bytes :-)";
assert_eq!(other_str.len(), N);
string.copy_str(other_str).unwrap();
// They're the same.
assert_eq!(string, other_str);
// Clear the string.
string.clear();
assert!(string.is_empty());
assert_eq!(string.len(), 0);
// `push_str()` should be the exact same.
string.push_str(other_str).unwrap();
assert_eq!(string, other_str);
// This string is full.
assert!(string.is_full());
assert_eq!(string.len(), N);
// Pushing new strings will error.
let err = string.push_str(other_str);
assert_eq!(err, Err(24));
// Still the same.
assert_eq!(string, other_str);
// Although, we can still overwrite it.
string.copy_str("hello-------------------");
assert_eq!(string, "hello-------------------");
assert_eq!(string.len(), 24);Implementations§
Source§impl<const N: usize> Str<N>
impl<const N: usize> Str<N>
Sourcepub const fn new() -> Self
pub const fn new() -> Self
Returns an empty Str.
let string = Str::<4>::new();
assert!(string.is_empty());
assert_eq!(string.len(), 0);
assert!(string.as_str().is_empty());
assert_eq!(string.as_str().len(), 0);Sourcepub const fn from_static_bytes(bytes: &'static [u8]) -> Self
pub const fn from_static_bytes(bytes: &'static [u8]) -> Self
Create a Self from static bytes.
The length of the input doesn’t need to be the
same as N, it just needs to be equal or less.
Exact length:
const BYTES: [u8; 3] = *b"abc";
const STR: Str<3> = Str::from_static_bytes(&BYTES);
assert_eq!(STR, "abc");Slightly less length is okay too:
const BYTES: [u8; 2] = *b"ab";
const STR: Str<3> = Str::from_static_bytes(&BYTES);
assert_eq!(STR.len(), 2);
assert_eq!(STR, "ab");§Compile-time panic
This function will panic at compile time if either:
- The
bytelength is longer thanN - The byte’s are not valid UTF-8 bytes
// This doesn't fit, will panic at compile time.
const STR: Str<3> = Str::from_static_bytes("abcd");Sourcepub const fn from_static_str(s: &'static str) -> Self
pub const fn from_static_str(s: &'static str) -> Self
Create a Self from a static str.
The length of the input doesn’t need to be the
same as N, it just needs to be equal or less.
Exact length:
const S: &str = "abc";
const STR: Str<3> = Str::from_static_str(&S);
assert_eq!(STR, "abc");Slightly less length is okay too:
const S: &str = "ab";
const STR: Str<3> = Str::from_static_str(&S);
assert_eq!(STR.len(), 2);
assert_eq!(STR, "ab");§Compile-time panic
This function will panic at compile time
if the str length is longer than N.
// This doesn't fit, will panic at compile time.
const STR: Str<3> = Str::from_static_str("abcd");Sourcepub const fn as_bytes_all(&self) -> &[u8] ⓘ
pub const fn as_bytes_all(&self) -> &[u8] ⓘ
Return all the bytes of this Str, whether valid UTF-8 or not.
let mut string = Str::<10>::new();
string.push_str("hello").unwrap();
// The string length is 5, but the slice
// returned is the full capacity, 10.
assert_eq!(string.as_bytes_all().len(), 10);Sourcepub unsafe fn as_bytes_all_mut(&mut self) -> &mut [u8] ⓘ
pub unsafe fn as_bytes_all_mut(&mut self) -> &mut [u8] ⓘ
Return all the bytes of this Str (mutably), whether valid UTF-8 or not
§Safety
The caller must ensure that the content of the slice is valid
UTF-8 before the borrow ends and the underlying Str is used.
The caller must also ensure the len is correctly set
with Str::set_len or Str::set_len_u8.
let mut string = Str::<5>::new();
string.push_str("hi").unwrap();
assert_eq!(string, "hi");
assert_eq!(string.len(), 2);
// Safety: We must ensure we leave
// leave the bytes as valid UTF-8 bytes
// and that we set the length correctly.
unsafe {
// Mutate to valid UTF-8 bytes.
let mut_ref = string.as_bytes_all_mut();
mut_ref.copy_from_slice(&b"world"[..]);
// Set the new length.
string.set_len(5);
}
assert_eq!(string, "world");
assert_eq!(string.len(), 5);Sourcepub const fn len(&self) -> usize
pub const fn len(&self) -> usize
Return the length of the valid UTF-8 bytes of this Str
let mut s = Str::<5>::new();
s.push_str("h").unwrap();
assert_eq!(s.len(), 1_usize);
s.push_str("ello").unwrap();
assert_eq!(s.len(), 5_usize);Sourcepub unsafe fn set_len(&mut self, len: usize)
pub unsafe fn set_len(&mut self, len: usize)
Set the length of the valid UTF-8 bytes of this Str
This will usually be used when manually mutating Str with Str::as_bytes_all_mut().
let mut s = Str::<3>::new();
assert_eq!(s.len(), 0);
unsafe { s.set_len(3); } // <- Using the `Str`
assert_eq!(s.len(), 3); // beyond this point
// is a bad idea.
// This wouldn't be undefined behavior,
// but the inner buffer is all zeros.
assert_eq!(s.as_str(), "\0\0\0");
// Overwrite the bytes.
unsafe {
let mut_ref = s.as_bytes_all_mut();
mut_ref[0] = b'a';
mut_ref[1] = b'b';
mut_ref[2] = b'c';
}
// Should be safe from this point.
assert_eq!(s.as_str(), "abc");
assert_eq!(s.len(), 3);§Safety
Other functions will rely on the internal length to be correct, so the caller must ensure this length is actually correct.
Sourcepub unsafe fn set_len_u8(&mut self, len: u8)
pub unsafe fn set_len_u8(&mut self, len: u8)
Set the length of the valid UTF-8 bytes of this Str
This will usually be used when manually mutating Str with Str::as_bytes_all_mut().
let mut s = Str::<3>::new();
assert_eq!(s.len(), 0);
unsafe { s.set_len_u8(3); } // <- Using the `Str`
assert_eq!(s.len(), 3); // beyond this point
// is a bad idea.
// This wouldn't be undefined behavior,
// but the inner buffer is all zeros.
assert_eq!(s.as_str(), "\0\0\0");
// Overwrite the bytes.
unsafe {
let mut_ref = s.as_bytes_all_mut();
mut_ref[0] = b'a';
mut_ref[1] = b'b';
mut_ref[2] = b'c';
}
// Should be safe from this point.
assert_eq!(s.as_str(), "abc");
assert_eq!(s.len(), 3);§Safety
Other functions will rely on the internal length to be correct, so the caller must ensure this length is actually correct.
Sourcepub const fn remaining(&self) -> usize
pub const fn remaining(&self) -> usize
How many available bytes are left in this Str
before the Self::CAPACITY is completely filled.
let mut s = Str::<5>::new();
s.push_str("hi");
assert_eq!(s.remaining(), 3);Sourcepub const fn as_bytes(&self) -> &[u8] ⓘ
pub const fn as_bytes(&self) -> &[u8] ⓘ
Returns only the valid UTF-8 bytes of this Str as a byte slice.
let s = Str::<10>::from_static_str("hello");
assert_eq!(s.as_bytes().len(), 5);Sourcepub unsafe fn as_bytes_mut(&mut self) -> &mut [u8] ⓘ
pub unsafe fn as_bytes_mut(&mut self) -> &mut [u8] ⓘ
Self::as_bytes(), but returns mutable bytes
§Safety
The length must be set correctly if mutated.
let mut s = Str::<10>::from_static_str("hello");
assert_eq!(s.as_bytes().len(), 5);
unsafe {
// Length not set yet.
s.as_bytes_mut().copy_from_slice(&[0; 5]);
assert_eq!(s.as_bytes_mut().len(), 5);
// Set.
s.set_len(0);
}
assert_eq!(s.as_str(), "");
assert_eq!(s.as_bytes().len(), 0);Sourcepub const fn as_ptr(&self) -> *const u8
pub const fn as_ptr(&self) -> *const u8
Returns a pointer to the first byte in the string array.
let s = Str::<5>::from_static_str("hello");
let ptr = s.as_ptr();
unsafe {
// The first byte is the char `h`.
assert_eq!(*ptr, b'h');
}Sourcepub fn as_mut_ptr(&mut self) -> *mut u8
pub fn as_mut_ptr(&mut self) -> *mut u8
Returns a mutable pointer to the first byte in the string array.
let mut s = Str::<5>::from_static_str("hello");
let ptr = s.as_mut_ptr();
unsafe {
// The first byte is the char `h`.
assert_eq!(*ptr, b'h');
// Let's change it.
*ptr = b'e';
}
assert_eq!(s, "eello");Sourcepub fn into_vec(self) -> Vec<u8> ⓘ
pub fn into_vec(self) -> Vec<u8> ⓘ
Returns only the valid UTF-8 bytes of this Str as a Vec<u8>
let s = Str::<10>::from_static_str("hello");
let v = s.into_vec();
assert_eq!(v.len(), 5);
let s = unsafe { String::from_utf8_unchecked(v) };
assert_eq!(s, "hello");Sourcepub const fn invalid(&self) -> bool
pub const fn invalid(&self) -> bool
Check this Str for correctness.
When constructing/receiving a Str outside of
its constructors, it may not be guaranteed that
the invariants are upheld.
This function will return true if:
- Internal length is greater than the internal byte array
.as_str()would return invalid UTF-8
// Create `Str` with maximum 5 length.
let mut string = Str::<5>::new();
assert_eq!(string.invalid(), false);
// Unsafely set the length to 10.
unsafe { string.set_len(10); }
// This string is now invalid.
assert_eq!(string.invalid(), true);Sourcepub fn clear(&mut self)
pub fn clear(&mut self)
Clears all bytes of this Str.
// Create a string.
let mut s = Str::<5>::from_static_str("hello");
assert_eq!(s, "hello");
// Clear the string.
s.clear();
assert_eq!(s, "");
assert!(s.is_empty());§Note
This does not actually mutate any bytes,
it simply sets the internal length to 0.
Do not rely on this to clear the actual bytes.
Sourcepub fn zero(&mut self)
pub fn zero(&mut self)
Zeros all bytes of this Str and sets the length to 0
Unlike Str::clear(), this actually sets all
the bytes in the internal array to 0.
// Create a string.
let mut s = Str::<5>::from_static_str("hello");
assert_eq!(s, "hello");
// Zero the string.
s.zero();
assert_eq!(s, "");
assert!(s.is_empty());Sourcepub const fn is_empty(&self) -> bool
pub const fn is_empty(&self) -> bool
If this Str is empty.
let mut s = Str::<10>::new();
assert_eq!(s, "");
assert!(s.is_empty());
s.push_str("a").unwrap();
assert!(!s.is_empty());Sourcepub const fn is_full(&self) -> bool
pub const fn is_full(&self) -> bool
If this Str is full (no more capacity left).
let mut s = Str::<3>::new();
assert_eq!(s.len(), 0);
assert!(!s.is_full());
s.push_str("123").unwrap();
assert_eq!(s.len(), 3);
assert!(s.is_full());Sourcepub const fn as_str(&self) -> &str
pub const fn as_str(&self) -> &str
This Str, as a valid UTF-8 str.
let s = Str::<5>::from_static_str("hello");
assert_eq!(s.as_str(), "hello");§Panics
This will panic in debug mode if Self::invalid returns true.
Sourcepub unsafe fn as_str_mut(&mut self) -> &mut str
pub unsafe fn as_str_mut(&mut self) -> &mut str
Sourcepub fn into_string(self) -> String
pub fn into_string(self) -> String
Consumes self into a String
let s = Str::<5>::from_static_str("hello");
let s: String = s.into_string();
assert_eq!(s, "hello");Sourcepub fn copy_str(&mut self, s: impl AsRef<str>) -> Result<usize, usize>
pub fn copy_str(&mut self, s: impl AsRef<str>) -> Result<usize, usize>
Overwrites self with the str s.
The input s must be the exact same length
as N or this function will error.
§Errors
If the copy was successful, Result::Ok is returned with the new length of the string.
If the copy failed because s.len() > N, Result::Err is returned with how many extra bytes couldn’t fit.
If the copy failed because s.len() != N, Result::Err is returned as Err(0).
let mut string = Str::<3>::new();
// Input string is 4 in length, we can't copy it.
// There is 1 extra byte that can't fit.
assert_eq!(string.copy_str("abcd"), Err(1));
// Input string is 2 in length, not exactly 3.
// `Err(0)` will be returned to indicate this.
assert_eq!(string.copy_str("ab"), Err(0));
// This fits.
assert_eq!(string.copy_str("abc"), Ok(3));Sourcepub fn copy_str_unchecked(&mut self, s: impl AsRef<str>) -> usize
pub fn copy_str_unchecked(&mut self, s: impl AsRef<str>) -> usize
Performs the same operation as Self::copy_str() except
this function does not check if the input str s is too long.
If the copy was successful, the new length of the string is returned.
If the copy failed, this function will panic.
let mut string = Str::<3>::new();
// Input string is 3 in length, we can copy it.
assert_eq!(string.copy_str_unchecked("abc"), 3);§Panics
Instead of erroring, this function will panic if the input s.len() != N.
Input too long:
let mut string = Str::<3>::new();
// Input string is 5 in length, this will panic.
string.copy_str_unchecked("abcd");Input not long enough:
let mut string = Str::<3>::new();
// Input string is 2 in length, this will panic.
string.copy_str_unchecked("ab");Input is just right:
let mut string = Str::<3>::new();
string.copy_str_unchecked("abc");
assert_eq!(string, "abc")Sourcepub fn push_str(&mut self, s: impl AsRef<str>) -> Result<usize, usize>
pub fn push_str(&mut self, s: impl AsRef<str>) -> Result<usize, usize>
Appends self with the str s.
§Errors
If the push was successful (or s was empty),
Result::Ok is returned with the new length of the string.
If the push failed, Result::Err is returned
with how many extra bytes couldn’t fit.
let mut string = Str::<3>::new();
// Input string is 4 in length.
// We can't push it.
let err = string.push_str("abcd");
assert_eq!(err, Err(1));
// The string is still empty.
assert!(string.is_empty());
// This 2 length string will fit.
string.push_str("ab").unwrap();
assert_eq!(string, "ab");
// This 1 length string will fit.
string.push_str("c").unwrap();
assert_eq!(string, "abc");
// But not anymore.
let err = string.push_str("d");
assert_eq!(err, Err(1));
assert_eq!(string, "abc");Sourcepub fn push_str_panic(&mut self, s: impl AsRef<str>) -> usize
pub fn push_str_panic(&mut self, s: impl AsRef<str>) -> usize
Appends self with the str s.
If the push was successful (or s was empty),
a usize is returned, representing the new length of the string.
let mut s = Str::<5>::new();
assert_eq!(s.push_str_panic("wow"), 3);§Panics
If the push failed, this function panics.
Input string is > than capacity:
let mut s = Str::<3>::new();
s.push_str_panic("abcd");Str has no more remaining capacity:
let mut s = Str::<4>::from_static_str("wow");
assert_eq!(s.len(), 3);
assert_eq!(s.remaining(), 1);
// This won't fit, will panic.
s.push_str_panic("wow");Sourcepub fn push_str_saturating(&mut self, s: impl AsRef<str>) -> usize
pub fn push_str_saturating(&mut self, s: impl AsRef<str>) -> usize
Appends self with the str s, saturating if there is no Self::CAPACITY left
This function returns a usize, representing how many bytes were written.
If there is no byte capacity left, this function will return 0.
UTF-8 strings are accounted for, and are split on char basis, for example:
let mut s = Str::<7>::new();
// Crab is 4 bytes.
assert_eq!(4, "🦀".len());
// Our capacity is only 7, so we can only fit 1.
assert_eq!(4, s.push_str_saturating("🦀"));
assert_eq!(s, "🦀");
assert_eq!(4, s.len());
assert_eq!(3, s.remaining());§Examples
let mut s = Str::<3>::new();
// Only 1 char, 3 bytes can fit.
assert_eq!(3, s.push_str_saturating("です"));
assert_eq!(s, "で");
s.clear();
// Only 3 ASCII characters can fit.
assert_eq!(3, s.push_str_saturating("hello"));
assert_eq!(s, "hel");
s.clear();
// Here, we push 3 characters with 1 capacity left.
s.push_str("wo").unwrap();
assert_eq!(1, s.push_str_saturating("rld"));
// And only 1 character was pushed.
assert_eq!(s, "wor");
// No matter how many times we push now, nothing will be added.
assert_eq!(0, s.push_str_saturating("!"));
assert_eq!(s, "wor");
assert_eq!(0, s.push_str_saturating("へええ"));
assert_eq!(s, "wor");
assert_eq!(0, s.push_str_saturating("枕"));
assert_eq!(s, "wor");
assert_eq!(0, s.push_str_saturating("🦀"));
assert_eq!(s, "wor");Sourcepub fn push_char(&mut self, c: char) -> Result<usize, usize>
pub fn push_char(&mut self, c: char) -> Result<usize, usize>
Str::push_str, but with a char
This acts in the same way as Str::push_str, but the input is a single char.
let mut string = Str::<3>::new();
// Input char is 4 in length.
// We can't push it.
let err = string.push_char('🦀');
assert_eq!(err, Err(1));
// The string is still empty.
assert!(string.is_empty());
// This 3 length char will fit.
assert_eq!(string.push_char('で'), Ok(3));
assert_eq!(string, "で");Sourcepub fn push_char_panic(&mut self, c: char) -> usize
pub fn push_char_panic(&mut self, c: char) -> usize
Str::push_str_panic, but with a char
This acts in the same way as Str::push_str_panic, but the input is a single char.
let mut s = Str::<5>::new();
assert_eq!(s.push_char_panic('す'), 3);§Panics
If the push failed, this function panics.
Input char is > than capacity:
let mut s = Str::<3>::new();
s.push_char_panic('🦀');Str has no more remaining capacity:
let mut s = Str::<4>::from_static_str("wow");
assert_eq!(s.len(), 3);
assert_eq!(s.remaining(), 1);
// This won't fit, will panic.
s.push_char_panic('🦀');Sourcepub fn push_char_saturating(&mut self, c: char) -> usize
pub fn push_char_saturating(&mut self, c: char) -> usize
Str::push_str_saturating, but with a char
This acts in the same way as Str::push_str_saturating, but the input is a single char.
let mut s = Str::<7>::new();
// Crab is 4 bytes.
assert_eq!(4, "🦀".len());
// Our capacity is only 7, so we can only fit 1.
assert_eq!(4, s.push_char_saturating('🦀'));
assert_eq!(0, s.push_char_saturating('🦀'));
assert_eq!(s, "🦀");
assert_eq!(4, s.len());
assert_eq!(3, s.remaining());§Examples
let mut s = Str::<3>::new();
assert_eq!(1, s.push_char_saturating('w'));
assert_eq!(1, s.push_char_saturating('o'));
assert_eq!(1, s.push_char_saturating('w'));
assert_eq!(s, "wow");
// No matter how many times we push now, nothing will be added.
assert_eq!(0, s.push_char_saturating('!'));
assert_eq!(s, "wow");
assert_eq!(0, s.push_char_saturating('へ'));
assert_eq!(s, "wow");
assert_eq!(0, s.push_char_saturating('枕'));
assert_eq!(s, "wow");
assert_eq!(0, s.push_char_saturating('🦀'));
assert_eq!(s, "wow");Sourcepub const unsafe fn from_raw(buf: [u8; N], len: u8) -> Self
pub const unsafe fn from_raw(buf: [u8; N], len: u8) -> Self
Creates a new Str from a byte array buffer and a length
let buf = [b'h', b'i', 0, 0, 0];
let len = 2;
// SAFETY: The length covers valid
// UTF-8 bytes in the provided buffer.
let s = unsafe { Str::<5>::from_raw(buf, len) };
assert_eq!(s, "hi");§Safety
The caller needs to make sure the bytes covered
by the len are actual valid UTF-8 bytes.
Sourcepub fn from_str_exact(string: impl AsRef<str>) -> Self
pub fn from_str_exact(string: impl AsRef<str>) -> Self
Sourcepub unsafe fn from_bytes_exact(bytes: impl AsRef<[u8]>) -> Self
pub unsafe fn from_bytes_exact(bytes: impl AsRef<[u8]>) -> Self
Create a Str directly from bytes
let s = unsafe { Str::<5>::from_bytes_exact(b"12345") };
assert_eq!(s, "12345");§Safety
The bytes must be valid UTF-8.
§Panics
The input bytes bytes’s length must
be exactly equal to Self::CAPACITY or this
function will panic.
// 1 too many characters, will panic.
let s = unsafe { Str::<4>::from_bytes_exact(b"12345") };Sourcepub fn make_ascii_uppercase(&mut self)
pub fn make_ascii_uppercase(&mut self)
Calls str::make_ascii_uppercase.
let mut s = Str::<5>::from_static_str("hello");
s.make_ascii_uppercase();
assert_eq!(s, "HELLO");Sourcepub fn make_ascii_lowercase(&mut self)
pub fn make_ascii_lowercase(&mut self)
Calls str::make_ascii_lowercase.
let mut s = Str::<5>::from_static_str("HELLO");
s.make_ascii_lowercase();
assert_eq!(s, "hello");Sourcepub fn truncate(&mut self, new_len: usize)
pub fn truncate(&mut self, new_len: usize)
Shortens this Str to the specified length.
If new_len is greater than the string’s current length, this has no effect.
Note that this method has no effect on the allocated capacity of the string
let mut s = Str::<4>::from_static_str("asdf");
s.truncate(1);
assert_eq!(s, "a");§Panics
Panics if new_len does not lie on a char boundary.
let mut s = Str::<6>::from_static_str("です");
// This does not lie on a full char, it will panic.
s.truncate(4);Sourcepub fn remove(&mut self, idx: usize) -> char
pub fn remove(&mut self, idx: usize) -> char
Removes a char from this Str at a byte position and returns it.
This is an O(n) operation, as it requires copying every element in the buffer.
let mut s = Str::<3>::from_static_str("foo");
assert_eq!(s.remove(0), 'f');
assert_eq!(s.remove(1), 'o');
assert_eq!(s.remove(0), 'o');§Panics
Panics if idx is larger than or equal to the Str’s length,
or if it does not lie on a char boundary.
Sourcepub fn pop(&mut self) -> Option<char>
pub fn pop(&mut self) -> Option<char>
Removes the last character from the Str and returns it.
Returns None if this Str is empty.
let mut s = Str::<3>::from_static_str("foo");
assert_eq!(s.len(), 3);
assert_eq!(s.pop(), Some('o'));
assert_eq!(s.len(), 2);
assert_eq!(s.pop(), Some('o'));
assert_eq!(s.len(), 1);
assert_eq!(s.pop(), Some('f'));
assert_eq!(s.len(), 0);
assert_eq!(s.pop(), None);Methods from Deref<Target = str>§
1.0.0 · Sourcepub fn is_empty(&self) -> bool
pub fn is_empty(&self) -> bool
Returns true if self has a length of zero bytes.
§Examples
let s = "";
assert!(s.is_empty());
let s = "not empty";
assert!(!s.is_empty());1.9.0 · Sourcepub fn is_char_boundary(&self, index: usize) -> bool
pub fn is_char_boundary(&self, index: usize) -> bool
Checks that index-th byte is the first byte in a UTF-8 code point
sequence or the end of the string.
The start and end of the string (when index == self.len()) are
considered to be boundaries.
Returns false if index is greater than self.len().
§Examples
let s = "Löwe 老虎 Léopard";
assert!(s.is_char_boundary(0));
// start of `老`
assert!(s.is_char_boundary(6));
assert!(s.is_char_boundary(s.len()));
// second byte of `ö`
assert!(!s.is_char_boundary(2));
// third byte of `老`
assert!(!s.is_char_boundary(8));Sourcepub fn floor_char_boundary(&self, index: usize) -> usize
🔬This is a nightly-only experimental API. (round_char_boundary)
pub fn floor_char_boundary(&self, index: usize) -> usize
round_char_boundary)Finds the closest x not exceeding index where is_char_boundary(x) is true.
This method can help you truncate a string so that it’s still valid UTF-8, but doesn’t exceed a given number of bytes. Note that this is done purely at the character level and can still visually split graphemes, even though the underlying characters aren’t split. For example, the emoji 🧑🔬 (scientist) could be split so that the string only includes 🧑 (person) instead.
§Examples
#![feature(round_char_boundary)]
let s = "❤️🧡💛💚💙💜";
assert_eq!(s.len(), 26);
assert!(!s.is_char_boundary(13));
let closest = s.floor_char_boundary(13);
assert_eq!(closest, 10);
assert_eq!(&s[..closest], "❤️🧡");Sourcepub fn ceil_char_boundary(&self, index: usize) -> usize
🔬This is a nightly-only experimental API. (round_char_boundary)
pub fn ceil_char_boundary(&self, index: usize) -> usize
round_char_boundary)Finds the closest x not below index where is_char_boundary(x) is true.
If index is greater than the length of the string, this returns the length of the string.
This method is the natural complement to floor_char_boundary. See that method
for more details.
§Examples
#![feature(round_char_boundary)]
let s = "❤️🧡💛💚💙💜";
assert_eq!(s.len(), 26);
assert!(!s.is_char_boundary(13));
let closest = s.ceil_char_boundary(13);
assert_eq!(closest, 14);
assert_eq!(&s[..closest], "❤️🧡💛");1.0.0 · Sourcepub fn as_ptr(&self) -> *const u8
pub fn as_ptr(&self) -> *const u8
Converts a string slice to a raw pointer.
As string slices are a slice of bytes, the raw pointer points to a
u8. This pointer will be pointing to the first byte of the string
slice.
The caller must ensure that the returned pointer is never written to.
If you need to mutate the contents of the string slice, use as_mut_ptr.
§Examples
let s = "Hello";
let ptr = s.as_ptr();1.20.0 · Sourcepub fn get<I>(&self, i: I) -> Option<&<I as SliceIndex<str>>::Output>where
I: SliceIndex<str>,
pub fn get<I>(&self, i: I) -> Option<&<I as SliceIndex<str>>::Output>where
I: SliceIndex<str>,
Returns a subslice of str.
This is the non-panicking alternative to indexing the str. Returns
None whenever equivalent indexing operation would panic.
§Examples
let v = String::from("🗻∈🌏");
assert_eq!(Some("🗻"), v.get(0..4));
// indices not on UTF-8 sequence boundaries
assert!(v.get(1..).is_none());
assert!(v.get(..8).is_none());
// out of bounds
assert!(v.get(..42).is_none());1.20.0 · Sourcepub unsafe fn get_unchecked<I>(&self, i: I) -> &<I as SliceIndex<str>>::Outputwhere
I: SliceIndex<str>,
pub unsafe fn get_unchecked<I>(&self, i: I) -> &<I as SliceIndex<str>>::Outputwhere
I: SliceIndex<str>,
Returns an unchecked subslice of str.
This is the unchecked alternative to indexing the str.
§Safety
Callers of this function are responsible that these preconditions are satisfied:
- The starting index must not exceed the ending index;
- Indexes must be within bounds of the original slice;
- Indexes must lie on UTF-8 sequence boundaries.
Failing that, the returned string slice may reference invalid memory or
violate the invariants communicated by the str type.
§Examples
let v = "🗻∈🌏";
unsafe {
assert_eq!("🗻", v.get_unchecked(0..4));
assert_eq!("∈", v.get_unchecked(4..7));
assert_eq!("🌏", v.get_unchecked(7..11));
}1.0.0 · Sourcepub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str
👎Deprecated since 1.29.0: use get_unchecked(begin..end) instead
pub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str
get_unchecked(begin..end) insteadCreates a string slice from another string slice, bypassing safety checks.
This is generally not recommended, use with caution! For a safe
alternative see str and Index.
This new slice goes from begin to end, including begin but
excluding end.
To get a mutable string slice instead, see the
slice_mut_unchecked method.
§Safety
Callers of this function are responsible that three preconditions are satisfied:
beginmust not exceedend.beginandendmust be byte positions within the string slice.beginandendmust lie on UTF-8 sequence boundaries.
§Examples
let s = "Löwe 老虎 Léopard";
unsafe {
assert_eq!("Löwe 老虎 Léopard", s.slice_unchecked(0, 21));
}
let s = "Hello, world!";
unsafe {
assert_eq!("world", s.slice_unchecked(7, 12));
}1.4.0 · Sourcepub fn split_at(&self, mid: usize) -> (&str, &str)
pub fn split_at(&self, mid: usize) -> (&str, &str)
Divides one string slice into two at an index.
The argument, mid, should be a byte offset from the start of the
string. It must also be on the boundary of a UTF-8 code point.
The two slices returned go from the start of the string slice to mid,
and from mid to the end of the string slice.
To get mutable string slices instead, see the split_at_mut
method.
§Panics
Panics if mid is not on a UTF-8 code point boundary, or if it is past
the end of the last code point of the string slice. For a non-panicking
alternative see split_at_checked.
§Examples
let s = "Per Martin-Löf";
let (first, last) = s.split_at(3);
assert_eq!("Per", first);
assert_eq!(" Martin-Löf", last);1.80.0 · Sourcepub fn split_at_checked(&self, mid: usize) -> Option<(&str, &str)>
pub fn split_at_checked(&self, mid: usize) -> Option<(&str, &str)>
Divides one string slice into two at an index.
The argument, mid, should be a valid byte offset from the start of the
string. It must also be on the boundary of a UTF-8 code point. The
method returns None if that’s not the case.
The two slices returned go from the start of the string slice to mid,
and from mid to the end of the string slice.
To get mutable string slices instead, see the split_at_mut_checked
method.
§Examples
let s = "Per Martin-Löf";
let (first, last) = s.split_at_checked(3).unwrap();
assert_eq!("Per", first);
assert_eq!(" Martin-Löf", last);
assert_eq!(None, s.split_at_checked(13)); // Inside “ö”
assert_eq!(None, s.split_at_checked(16)); // Beyond the string length1.0.0 · Sourcepub fn chars(&self) -> Chars<'_>
pub fn chars(&self) -> Chars<'_>
Returns an iterator over the chars of a string slice.
As a string slice consists of valid UTF-8, we can iterate through a
string slice by char. This method returns such an iterator.
It’s important to remember that char represents a Unicode Scalar
Value, and might not match your idea of what a ‘character’ is. Iteration
over grapheme clusters may be what you actually want. This functionality
is not provided by Rust’s standard library, check crates.io instead.
§Examples
Basic usage:
let word = "goodbye";
let count = word.chars().count();
assert_eq!(7, count);
let mut chars = word.chars();
assert_eq!(Some('g'), chars.next());
assert_eq!(Some('o'), chars.next());
assert_eq!(Some('o'), chars.next());
assert_eq!(Some('d'), chars.next());
assert_eq!(Some('b'), chars.next());
assert_eq!(Some('y'), chars.next());
assert_eq!(Some('e'), chars.next());
assert_eq!(None, chars.next());Remember, chars might not match your intuition about characters:
let y = "y̆";
let mut chars = y.chars();
assert_eq!(Some('y'), chars.next()); // not 'y̆'
assert_eq!(Some('\u{0306}'), chars.next());
assert_eq!(None, chars.next());1.0.0 · Sourcepub fn char_indices(&self) -> CharIndices<'_>
pub fn char_indices(&self) -> CharIndices<'_>
Returns an iterator over the chars of a string slice, and their
positions.
As a string slice consists of valid UTF-8, we can iterate through a
string slice by char. This method returns an iterator of both
these chars, as well as their byte positions.
The iterator yields tuples. The position is first, the char is
second.
§Examples
Basic usage:
let word = "goodbye";
let count = word.char_indices().count();
assert_eq!(7, count);
let mut char_indices = word.char_indices();
assert_eq!(Some((0, 'g')), char_indices.next());
assert_eq!(Some((1, 'o')), char_indices.next());
assert_eq!(Some((2, 'o')), char_indices.next());
assert_eq!(Some((3, 'd')), char_indices.next());
assert_eq!(Some((4, 'b')), char_indices.next());
assert_eq!(Some((5, 'y')), char_indices.next());
assert_eq!(Some((6, 'e')), char_indices.next());
assert_eq!(None, char_indices.next());Remember, chars might not match your intuition about characters:
let yes = "y̆es";
let mut char_indices = yes.char_indices();
assert_eq!(Some((0, 'y')), char_indices.next()); // not (0, 'y̆')
assert_eq!(Some((1, '\u{0306}')), char_indices.next());
// note the 3 here - the previous character took up two bytes
assert_eq!(Some((3, 'e')), char_indices.next());
assert_eq!(Some((4, 's')), char_indices.next());
assert_eq!(None, char_indices.next());1.0.0 · Sourcepub fn bytes(&self) -> Bytes<'_>
pub fn bytes(&self) -> Bytes<'_>
Returns an iterator over the bytes of a string slice.
As a string slice consists of a sequence of bytes, we can iterate through a string slice by byte. This method returns such an iterator.
§Examples
let mut bytes = "bors".bytes();
assert_eq!(Some(b'b'), bytes.next());
assert_eq!(Some(b'o'), bytes.next());
assert_eq!(Some(b'r'), bytes.next());
assert_eq!(Some(b's'), bytes.next());
assert_eq!(None, bytes.next());1.1.0 · Sourcepub fn split_whitespace(&self) -> SplitWhitespace<'_>
pub fn split_whitespace(&self) -> SplitWhitespace<'_>
Splits a string slice by whitespace.
The iterator returned will return string slices that are sub-slices of the original string slice, separated by any amount of whitespace.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space. If you only want to split on ASCII whitespace
instead, use split_ascii_whitespace.
§Examples
Basic usage:
let mut iter = "A few words".split_whitespace();
assert_eq!(Some("A"), iter.next());
assert_eq!(Some("few"), iter.next());
assert_eq!(Some("words"), iter.next());
assert_eq!(None, iter.next());All kinds of whitespace are considered:
let mut iter = " Mary had\ta\u{2009}little \n\t lamb".split_whitespace();
assert_eq!(Some("Mary"), iter.next());
assert_eq!(Some("had"), iter.next());
assert_eq!(Some("a"), iter.next());
assert_eq!(Some("little"), iter.next());
assert_eq!(Some("lamb"), iter.next());
assert_eq!(None, iter.next());If the string is empty or all whitespace, the iterator yields no string slices:
assert_eq!("".split_whitespace().next(), None);
assert_eq!(" ".split_whitespace().next(), None);1.34.0 · Sourcepub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace<'_>
pub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace<'_>
Splits a string slice by ASCII whitespace.
The iterator returned will return string slices that are sub-slices of the original string slice, separated by any amount of ASCII whitespace.
To split by Unicode Whitespace instead, use split_whitespace.
§Examples
Basic usage:
let mut iter = "A few words".split_ascii_whitespace();
assert_eq!(Some("A"), iter.next());
assert_eq!(Some("few"), iter.next());
assert_eq!(Some("words"), iter.next());
assert_eq!(None, iter.next());All kinds of ASCII whitespace are considered:
let mut iter = " Mary had\ta little \n\t lamb".split_ascii_whitespace();
assert_eq!(Some("Mary"), iter.next());
assert_eq!(Some("had"), iter.next());
assert_eq!(Some("a"), iter.next());
assert_eq!(Some("little"), iter.next());
assert_eq!(Some("lamb"), iter.next());
assert_eq!(None, iter.next());If the string is empty or all ASCII whitespace, the iterator yields no string slices:
assert_eq!("".split_ascii_whitespace().next(), None);
assert_eq!(" ".split_ascii_whitespace().next(), None);1.0.0 · Sourcepub fn lines(&self) -> Lines<'_>
pub fn lines(&self) -> Lines<'_>
Returns an iterator over the lines of a string, as string slices.
Lines are split at line endings that are either newlines (\n) or
sequences of a carriage return followed by a line feed (\r\n).
Line terminators are not included in the lines returned by the iterator.
Note that any carriage return (\r) not immediately followed by a
line feed (\n) does not split a line. These carriage returns are
thereby included in the produced lines.
The final line ending is optional. A string that ends with a final line ending will return the same lines as an otherwise identical string without a final line ending.
§Examples
Basic usage:
let text = "foo\r\nbar\n\nbaz\r";
let mut lines = text.lines();
assert_eq!(Some("foo"), lines.next());
assert_eq!(Some("bar"), lines.next());
assert_eq!(Some(""), lines.next());
// Trailing carriage return is included in the last line
assert_eq!(Some("baz\r"), lines.next());
assert_eq!(None, lines.next());The final line does not require any ending:
let text = "foo\nbar\n\r\nbaz";
let mut lines = text.lines();
assert_eq!(Some("foo"), lines.next());
assert_eq!(Some("bar"), lines.next());
assert_eq!(Some(""), lines.next());
assert_eq!(Some("baz"), lines.next());
assert_eq!(None, lines.next());1.0.0 · Sourcepub fn lines_any(&self) -> LinesAny<'_>
👎Deprecated since 1.4.0: use lines() instead now
pub fn lines_any(&self) -> LinesAny<'_>
Returns an iterator over the lines of a string.
1.8.0 · Sourcepub fn encode_utf16(&self) -> EncodeUtf16<'_>
pub fn encode_utf16(&self) -> EncodeUtf16<'_>
Returns an iterator of u16 over the string encoded as UTF-16.
§Examples
let text = "Zażółć gęślą jaźń";
let utf8_len = text.len();
let utf16_len = text.encode_utf16().count();
assert!(utf16_len <= utf8_len);1.0.0 · Sourcepub fn contains<P>(&self, pat: P) -> boolwhere
P: Pattern,
pub fn contains<P>(&self, pat: P) -> boolwhere
P: Pattern,
Returns true if the given pattern matches a sub-slice of
this string slice.
Returns false if it does not.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Examples
let bananas = "bananas";
assert!(bananas.contains("nana"));
assert!(!bananas.contains("apples"));1.0.0 · Sourcepub fn starts_with<P>(&self, pat: P) -> boolwhere
P: Pattern,
pub fn starts_with<P>(&self, pat: P) -> boolwhere
P: Pattern,
Returns true if the given pattern matches a prefix of this
string slice.
Returns false if it does not.
The pattern can be a &str, in which case this function will return true if
the &str is a prefix of this string slice.
The pattern can also be a char, a slice of chars, or a
function or closure that determines if a character matches.
These will only be checked against the first character of this string slice.
Look at the second example below regarding behavior for slices of chars.
§Examples
let bananas = "bananas";
assert!(bananas.starts_with("bana"));
assert!(!bananas.starts_with("nana"));let bananas = "bananas";
// Note that both of these assert successfully.
assert!(bananas.starts_with(&['b', 'a', 'n', 'a']));
assert!(bananas.starts_with(&['a', 'b', 'c', 'd']));1.0.0 · Sourcepub fn ends_with<P>(&self, pat: P) -> bool
pub fn ends_with<P>(&self, pat: P) -> bool
Returns true if the given pattern matches a suffix of this
string slice.
Returns false if it does not.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Examples
let bananas = "bananas";
assert!(bananas.ends_with("anas"));
assert!(!bananas.ends_with("nana"));1.0.0 · Sourcepub fn find<P>(&self, pat: P) -> Option<usize>where
P: Pattern,
pub fn find<P>(&self, pat: P) -> Option<usize>where
P: Pattern,
Returns the byte index of the first character of this string slice that matches the pattern.
Returns None if the pattern doesn’t match.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Examples
Simple patterns:
let s = "Löwe 老虎 Léopard Gepardi";
assert_eq!(s.find('L'), Some(0));
assert_eq!(s.find('é'), Some(14));
assert_eq!(s.find("pard"), Some(17));More complex patterns using point-free style and closures:
let s = "Löwe 老虎 Léopard";
assert_eq!(s.find(char::is_whitespace), Some(5));
assert_eq!(s.find(char::is_lowercase), Some(1));
assert_eq!(s.find(|c: char| c.is_whitespace() || c.is_lowercase()), Some(1));
assert_eq!(s.find(|c: char| (c < 'o') && (c > 'a')), Some(4));Not finding the pattern:
let s = "Löwe 老虎 Léopard";
let x: &[_] = &['1', '2'];
assert_eq!(s.find(x), None);1.0.0 · Sourcepub fn rfind<P>(&self, pat: P) -> Option<usize>
pub fn rfind<P>(&self, pat: P) -> Option<usize>
Returns the byte index for the first character of the last match of the pattern in this string slice.
Returns None if the pattern doesn’t match.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Examples
Simple patterns:
let s = "Löwe 老虎 Léopard Gepardi";
assert_eq!(s.rfind('L'), Some(13));
assert_eq!(s.rfind('é'), Some(14));
assert_eq!(s.rfind("pard"), Some(24));More complex patterns with closures:
let s = "Löwe 老虎 Léopard";
assert_eq!(s.rfind(char::is_whitespace), Some(12));
assert_eq!(s.rfind(char::is_lowercase), Some(20));Not finding the pattern:
let s = "Löwe 老虎 Léopard";
let x: &[_] = &['1', '2'];
assert_eq!(s.rfind(x), None);1.0.0 · Sourcepub fn split<P>(&self, pat: P) -> Split<'_, P>where
P: Pattern,
pub fn split<P>(&self, pat: P) -> Split<'_, P>where
P: Pattern,
Returns an iterator over substrings of this string slice, separated by characters matched by a pattern.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Iterator behavior
The returned iterator will be a DoubleEndedIterator if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, e.g., char, but not for &str.
If the pattern allows a reverse search but its results might differ
from a forward search, the rsplit method can be used.
§Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lamb".split(' ').collect();
assert_eq!(v, ["Mary", "had", "a", "little", "lamb"]);
let v: Vec<&str> = "".split('X').collect();
assert_eq!(v, [""]);
let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect();
assert_eq!(v, ["lion", "", "tiger", "leopard"]);
let v: Vec<&str> = "lion::tiger::leopard".split("::").collect();
assert_eq!(v, ["lion", "tiger", "leopard"]);
let v: Vec<&str> = "abc1def2ghi".split(char::is_numeric).collect();
assert_eq!(v, ["abc", "def", "ghi"]);
let v: Vec<&str> = "lionXtigerXleopard".split(char::is_uppercase).collect();
assert_eq!(v, ["lion", "tiger", "leopard"]);If the pattern is a slice of chars, split on each occurrence of any of the characters:
let v: Vec<&str> = "2020-11-03 23:59".split(&['-', ' ', ':', '@'][..]).collect();
assert_eq!(v, ["2020", "11", "03", "23", "59"]);A more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".split(|c| c == '1' || c == 'X').collect();
assert_eq!(v, ["abc", "def", "ghi"]);If a string contains multiple contiguous separators, you will end up with empty strings in the output:
let x = "||||a||b|c".to_string();
let d: Vec<_> = x.split('|').collect();
assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);Contiguous separators are separated by the empty string.
let x = "(///)".to_string();
let d: Vec<_> = x.split('/').collect();
assert_eq!(d, &["(", "", "", ")"]);Separators at the start or end of a string are neighbored by empty strings.
let d: Vec<_> = "010".split("0").collect();
assert_eq!(d, &["", "1", ""]);When the empty string is used as a separator, it separates every character in the string, along with the beginning and end of the string.
let f: Vec<_> = "rust".split("").collect();
assert_eq!(f, &["", "r", "u", "s", "t", ""]);Contiguous separators can lead to possibly surprising behavior when whitespace is used as the separator. This code is correct:
let x = " a b c".to_string();
let d: Vec<_> = x.split(' ').collect();
assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);It does not give you:
assert_eq!(d, &["a", "b", "c"]);Use split_whitespace for this behavior.
1.51.0 · Sourcepub fn split_inclusive<P>(&self, pat: P) -> SplitInclusive<'_, P>where
P: Pattern,
pub fn split_inclusive<P>(&self, pat: P) -> SplitInclusive<'_, P>where
P: Pattern,
Returns an iterator over substrings of this string slice, separated by characters matched by a pattern.
Differs from the iterator produced by split in that split_inclusive
leaves the matched part as the terminator of the substring.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Examples
let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb."
.split_inclusive('\n').collect();
assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb."]);If the last element of the string is matched, that element will be considered the terminator of the preceding substring. That substring will be the last item returned by the iterator.
let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb.\n"
.split_inclusive('\n').collect();
assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb.\n"]);1.0.0 · Sourcepub fn rsplit<P>(&self, pat: P) -> RSplit<'_, P>
pub fn rsplit<P>(&self, pat: P) -> RSplit<'_, P>
Returns an iterator over substrings of the given string slice, separated by characters matched by a pattern and yielded in reverse order.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Iterator behavior
The returned iterator requires that the pattern supports a reverse
search, and it will be a DoubleEndedIterator if a forward/reverse
search yields the same elements.
For iterating from the front, the split method can be used.
§Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lamb".rsplit(' ').collect();
assert_eq!(v, ["lamb", "little", "a", "had", "Mary"]);
let v: Vec<&str> = "".rsplit('X').collect();
assert_eq!(v, [""]);
let v: Vec<&str> = "lionXXtigerXleopard".rsplit('X').collect();
assert_eq!(v, ["leopard", "tiger", "", "lion"]);
let v: Vec<&str> = "lion::tiger::leopard".rsplit("::").collect();
assert_eq!(v, ["leopard", "tiger", "lion"]);A more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".rsplit(|c| c == '1' || c == 'X').collect();
assert_eq!(v, ["ghi", "def", "abc"]);1.0.0 · Sourcepub fn split_terminator<P>(&self, pat: P) -> SplitTerminator<'_, P>where
P: Pattern,
pub fn split_terminator<P>(&self, pat: P) -> SplitTerminator<'_, P>where
P: Pattern,
Returns an iterator over substrings of the given string slice, separated by characters matched by a pattern.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
Equivalent to split, except that the trailing substring
is skipped if empty.
This method can be used for string data that is terminated, rather than separated by a pattern.
§Iterator behavior
The returned iterator will be a DoubleEndedIterator if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, e.g., char, but not for &str.
If the pattern allows a reverse search but its results might differ
from a forward search, the rsplit_terminator method can be used.
§Examples
let v: Vec<&str> = "A.B.".split_terminator('.').collect();
assert_eq!(v, ["A", "B"]);
let v: Vec<&str> = "A..B..".split_terminator(".").collect();
assert_eq!(v, ["A", "", "B", ""]);
let v: Vec<&str> = "A.B:C.D".split_terminator(&['.', ':'][..]).collect();
assert_eq!(v, ["A", "B", "C", "D"]);1.0.0 · Sourcepub fn rsplit_terminator<P>(&self, pat: P) -> RSplitTerminator<'_, P>
pub fn rsplit_terminator<P>(&self, pat: P) -> RSplitTerminator<'_, P>
Returns an iterator over substrings of self, separated by characters
matched by a pattern and yielded in reverse order.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
Equivalent to split, except that the trailing substring is
skipped if empty.
This method can be used for string data that is terminated, rather than separated by a pattern.
§Iterator behavior
The returned iterator requires that the pattern supports a reverse search, and it will be double ended if a forward/reverse search yields the same elements.
For iterating from the front, the split_terminator method can be
used.
§Examples
let v: Vec<&str> = "A.B.".rsplit_terminator('.').collect();
assert_eq!(v, ["B", "A"]);
let v: Vec<&str> = "A..B..".rsplit_terminator(".").collect();
assert_eq!(v, ["", "B", "", "A"]);
let v: Vec<&str> = "A.B:C.D".rsplit_terminator(&['.', ':'][..]).collect();
assert_eq!(v, ["D", "C", "B", "A"]);1.0.0 · Sourcepub fn splitn<P>(&self, n: usize, pat: P) -> SplitN<'_, P>where
P: Pattern,
pub fn splitn<P>(&self, n: usize, pat: P) -> SplitN<'_, P>where
P: Pattern,
Returns an iterator over substrings of the given string slice, separated
by a pattern, restricted to returning at most n items.
If n substrings are returned, the last substring (the nth substring)
will contain the remainder of the string.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Iterator behavior
The returned iterator will not be double ended, because it is not efficient to support.
If the pattern allows a reverse search, the rsplitn method can be
used.
§Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lambda".splitn(3, ' ').collect();
assert_eq!(v, ["Mary", "had", "a little lambda"]);
let v: Vec<&str> = "lionXXtigerXleopard".splitn(3, "X").collect();
assert_eq!(v, ["lion", "", "tigerXleopard"]);
let v: Vec<&str> = "abcXdef".splitn(1, 'X').collect();
assert_eq!(v, ["abcXdef"]);
let v: Vec<&str> = "".splitn(1, 'X').collect();
assert_eq!(v, [""]);A more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".splitn(2, |c| c == '1' || c == 'X').collect();
assert_eq!(v, ["abc", "defXghi"]);1.0.0 · Sourcepub fn rsplitn<P>(&self, n: usize, pat: P) -> RSplitN<'_, P>
pub fn rsplitn<P>(&self, n: usize, pat: P) -> RSplitN<'_, P>
Returns an iterator over substrings of this string slice, separated by a
pattern, starting from the end of the string, restricted to returning at
most n items.
If n substrings are returned, the last substring (the nth substring)
will contain the remainder of the string.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Iterator behavior
The returned iterator will not be double ended, because it is not efficient to support.
For splitting from the front, the splitn method can be used.
§Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lamb".rsplitn(3, ' ').collect();
assert_eq!(v, ["lamb", "little", "Mary had a"]);
let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(3, 'X').collect();
assert_eq!(v, ["leopard", "tiger", "lionX"]);
let v: Vec<&str> = "lion::tiger::leopard".rsplitn(2, "::").collect();
assert_eq!(v, ["leopard", "lion::tiger"]);A more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".rsplitn(2, |c| c == '1' || c == 'X').collect();
assert_eq!(v, ["ghi", "abc1def"]);1.52.0 · Sourcepub fn split_once<P>(&self, delimiter: P) -> Option<(&str, &str)>where
P: Pattern,
pub fn split_once<P>(&self, delimiter: P) -> Option<(&str, &str)>where
P: Pattern,
Splits the string on the first occurrence of the specified delimiter and returns prefix before delimiter and suffix after delimiter.
§Examples
assert_eq!("cfg".split_once('='), None);
assert_eq!("cfg=".split_once('='), Some(("cfg", "")));
assert_eq!("cfg=foo".split_once('='), Some(("cfg", "foo")));
assert_eq!("cfg=foo=bar".split_once('='), Some(("cfg", "foo=bar")));1.52.0 · Sourcepub fn rsplit_once<P>(&self, delimiter: P) -> Option<(&str, &str)>
pub fn rsplit_once<P>(&self, delimiter: P) -> Option<(&str, &str)>
Splits the string on the last occurrence of the specified delimiter and returns prefix before delimiter and suffix after delimiter.
§Examples
assert_eq!("cfg".rsplit_once('='), None);
assert_eq!("cfg=foo".rsplit_once('='), Some(("cfg", "foo")));
assert_eq!("cfg=foo=bar".rsplit_once('='), Some(("cfg=foo", "bar")));1.2.0 · Sourcepub fn matches<P>(&self, pat: P) -> Matches<'_, P>where
P: Pattern,
pub fn matches<P>(&self, pat: P) -> Matches<'_, P>where
P: Pattern,
Returns an iterator over the disjoint matches of a pattern within the given string slice.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Iterator behavior
The returned iterator will be a DoubleEndedIterator if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, e.g., char, but not for &str.
If the pattern allows a reverse search but its results might differ
from a forward search, the rmatches method can be used.
§Examples
let v: Vec<&str> = "abcXXXabcYYYabc".matches("abc").collect();
assert_eq!(v, ["abc", "abc", "abc"]);
let v: Vec<&str> = "1abc2abc3".matches(char::is_numeric).collect();
assert_eq!(v, ["1", "2", "3"]);1.2.0 · Sourcepub fn rmatches<P>(&self, pat: P) -> RMatches<'_, P>
pub fn rmatches<P>(&self, pat: P) -> RMatches<'_, P>
Returns an iterator over the disjoint matches of a pattern within this string slice, yielded in reverse order.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Iterator behavior
The returned iterator requires that the pattern supports a reverse
search, and it will be a DoubleEndedIterator if a forward/reverse
search yields the same elements.
For iterating from the front, the matches method can be used.
§Examples
let v: Vec<&str> = "abcXXXabcYYYabc".rmatches("abc").collect();
assert_eq!(v, ["abc", "abc", "abc"]);
let v: Vec<&str> = "1abc2abc3".rmatches(char::is_numeric).collect();
assert_eq!(v, ["3", "2", "1"]);1.5.0 · Sourcepub fn match_indices<P>(&self, pat: P) -> MatchIndices<'_, P>where
P: Pattern,
pub fn match_indices<P>(&self, pat: P) -> MatchIndices<'_, P>where
P: Pattern,
Returns an iterator over the disjoint matches of a pattern within this string slice as well as the index that the match starts at.
For matches of pat within self that overlap, only the indices
corresponding to the first match are returned.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Iterator behavior
The returned iterator will be a DoubleEndedIterator if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, e.g., char, but not for &str.
If the pattern allows a reverse search but its results might differ
from a forward search, the rmatch_indices method can be used.
§Examples
let v: Vec<_> = "abcXXXabcYYYabc".match_indices("abc").collect();
assert_eq!(v, [(0, "abc"), (6, "abc"), (12, "abc")]);
let v: Vec<_> = "1abcabc2".match_indices("abc").collect();
assert_eq!(v, [(1, "abc"), (4, "abc")]);
let v: Vec<_> = "ababa".match_indices("aba").collect();
assert_eq!(v, [(0, "aba")]); // only the first `aba`1.5.0 · Sourcepub fn rmatch_indices<P>(&self, pat: P) -> RMatchIndices<'_, P>
pub fn rmatch_indices<P>(&self, pat: P) -> RMatchIndices<'_, P>
Returns an iterator over the disjoint matches of a pattern within self,
yielded in reverse order along with the index of the match.
For matches of pat within self that overlap, only the indices
corresponding to the last match are returned.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Iterator behavior
The returned iterator requires that the pattern supports a reverse
search, and it will be a DoubleEndedIterator if a forward/reverse
search yields the same elements.
For iterating from the front, the match_indices method can be used.
§Examples
let v: Vec<_> = "abcXXXabcYYYabc".rmatch_indices("abc").collect();
assert_eq!(v, [(12, "abc"), (6, "abc"), (0, "abc")]);
let v: Vec<_> = "1abcabc2".rmatch_indices("abc").collect();
assert_eq!(v, [(4, "abc"), (1, "abc")]);
let v: Vec<_> = "ababa".rmatch_indices("aba").collect();
assert_eq!(v, [(2, "aba")]); // only the last `aba`1.0.0 · Sourcepub fn trim(&self) -> &str
pub fn trim(&self) -> &str
Returns a string slice with leading and trailing whitespace removed.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space, which includes newlines.
§Examples
let s = "\n Hello\tworld\t\n";
assert_eq!("Hello\tworld", s.trim());1.30.0 · Sourcepub fn trim_start(&self) -> &str
pub fn trim_start(&self) -> &str
Returns a string slice with leading whitespace removed.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space, which includes newlines.
§Text directionality
A string is a sequence of bytes. start in this context means the first
position of that byte string; for a left-to-right language like English or
Russian, this will be left side, and for right-to-left languages like
Arabic or Hebrew, this will be the right side.
§Examples
Basic usage:
let s = "\n Hello\tworld\t\n";
assert_eq!("Hello\tworld\t\n", s.trim_start());Directionality:
let s = " English ";
assert!(Some('E') == s.trim_start().chars().next());
let s = " עברית ";
assert!(Some('ע') == s.trim_start().chars().next());1.30.0 · Sourcepub fn trim_end(&self) -> &str
pub fn trim_end(&self) -> &str
Returns a string slice with trailing whitespace removed.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space, which includes newlines.
§Text directionality
A string is a sequence of bytes. end in this context means the last
position of that byte string; for a left-to-right language like English or
Russian, this will be right side, and for right-to-left languages like
Arabic or Hebrew, this will be the left side.
§Examples
Basic usage:
let s = "\n Hello\tworld\t\n";
assert_eq!("\n Hello\tworld", s.trim_end());Directionality:
let s = " English ";
assert!(Some('h') == s.trim_end().chars().rev().next());
let s = " עברית ";
assert!(Some('ת') == s.trim_end().chars().rev().next());1.0.0 · Sourcepub fn trim_left(&self) -> &str
👎Deprecated since 1.33.0: superseded by trim_start
pub fn trim_left(&self) -> &str
trim_startReturns a string slice with leading whitespace removed.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space.
§Text directionality
A string is a sequence of bytes. ‘Left’ in this context means the first position of that byte string; for a language like Arabic or Hebrew which are ‘right to left’ rather than ‘left to right’, this will be the right side, not the left.
§Examples
Basic usage:
let s = " Hello\tworld\t";
assert_eq!("Hello\tworld\t", s.trim_left());Directionality:
let s = " English";
assert!(Some('E') == s.trim_left().chars().next());
let s = " עברית";
assert!(Some('ע') == s.trim_left().chars().next());1.0.0 · Sourcepub fn trim_right(&self) -> &str
👎Deprecated since 1.33.0: superseded by trim_end
pub fn trim_right(&self) -> &str
trim_endReturns a string slice with trailing whitespace removed.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space.
§Text directionality
A string is a sequence of bytes. ‘Right’ in this context means the last position of that byte string; for a language like Arabic or Hebrew which are ‘right to left’ rather than ‘left to right’, this will be the left side, not the right.
§Examples
Basic usage:
let s = " Hello\tworld\t";
assert_eq!(" Hello\tworld", s.trim_right());Directionality:
let s = "English ";
assert!(Some('h') == s.trim_right().chars().rev().next());
let s = "עברית ";
assert!(Some('ת') == s.trim_right().chars().rev().next());1.0.0 · Sourcepub fn trim_matches<P>(&self, pat: P) -> &str
pub fn trim_matches<P>(&self, pat: P) -> &str
Returns a string slice with all prefixes and suffixes that match a pattern repeatedly removed.
The pattern can be a char, a slice of chars, or a function
or closure that determines if a character matches.
§Examples
Simple patterns:
assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar");
assert_eq!("123foo1bar123".trim_matches(char::is_numeric), "foo1bar");
let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_matches(x), "foo1bar");A more complex pattern, using a closure:
assert_eq!("1foo1barXX".trim_matches(|c| c == '1' || c == 'X'), "foo1bar");1.30.0 · Sourcepub fn trim_start_matches<P>(&self, pat: P) -> &strwhere
P: Pattern,
pub fn trim_start_matches<P>(&self, pat: P) -> &strwhere
P: Pattern,
Returns a string slice with all prefixes that match a pattern repeatedly removed.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Text directionality
A string is a sequence of bytes. start in this context means the first
position of that byte string; for a left-to-right language like English or
Russian, this will be left side, and for right-to-left languages like
Arabic or Hebrew, this will be the right side.
§Examples
assert_eq!("11foo1bar11".trim_start_matches('1'), "foo1bar11");
assert_eq!("123foo1bar123".trim_start_matches(char::is_numeric), "foo1bar123");
let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_start_matches(x), "foo1bar12");1.45.0 · Sourcepub fn strip_prefix<P>(&self, prefix: P) -> Option<&str>where
P: Pattern,
pub fn strip_prefix<P>(&self, prefix: P) -> Option<&str>where
P: Pattern,
Returns a string slice with the prefix removed.
If the string starts with the pattern prefix, returns the substring after the prefix,
wrapped in Some. Unlike trim_start_matches, this method removes the prefix exactly once.
If the string does not start with prefix, returns None.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Examples
assert_eq!("foo:bar".strip_prefix("foo:"), Some("bar"));
assert_eq!("foo:bar".strip_prefix("bar"), None);
assert_eq!("foofoo".strip_prefix("foo"), Some("foo"));1.45.0 · Sourcepub fn strip_suffix<P>(&self, suffix: P) -> Option<&str>
pub fn strip_suffix<P>(&self, suffix: P) -> Option<&str>
Returns a string slice with the suffix removed.
If the string ends with the pattern suffix, returns the substring before the suffix,
wrapped in Some. Unlike trim_end_matches, this method removes the suffix exactly once.
If the string does not end with suffix, returns None.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Examples
assert_eq!("bar:foo".strip_suffix(":foo"), Some("bar"));
assert_eq!("bar:foo".strip_suffix("bar"), None);
assert_eq!("foofoo".strip_suffix("foo"), Some("foo"));1.30.0 · Sourcepub fn trim_end_matches<P>(&self, pat: P) -> &str
pub fn trim_end_matches<P>(&self, pat: P) -> &str
Returns a string slice with all suffixes that match a pattern repeatedly removed.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Text directionality
A string is a sequence of bytes. end in this context means the last
position of that byte string; for a left-to-right language like English or
Russian, this will be right side, and for right-to-left languages like
Arabic or Hebrew, this will be the left side.
§Examples
Simple patterns:
assert_eq!("11foo1bar11".trim_end_matches('1'), "11foo1bar");
assert_eq!("123foo1bar123".trim_end_matches(char::is_numeric), "123foo1bar");
let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_end_matches(x), "12foo1bar");A more complex pattern, using a closure:
assert_eq!("1fooX".trim_end_matches(|c| c == '1' || c == 'X'), "1foo");1.0.0 · Sourcepub fn trim_left_matches<P>(&self, pat: P) -> &strwhere
P: Pattern,
👎Deprecated since 1.33.0: superseded by trim_start_matches
pub fn trim_left_matches<P>(&self, pat: P) -> &strwhere
P: Pattern,
trim_start_matchesReturns a string slice with all prefixes that match a pattern repeatedly removed.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Text directionality
A string is a sequence of bytes. ‘Left’ in this context means the first position of that byte string; for a language like Arabic or Hebrew which are ‘right to left’ rather than ‘left to right’, this will be the right side, not the left.
§Examples
assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11");
assert_eq!("123foo1bar123".trim_left_matches(char::is_numeric), "foo1bar123");
let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_left_matches(x), "foo1bar12");1.0.0 · Sourcepub fn trim_right_matches<P>(&self, pat: P) -> &str
👎Deprecated since 1.33.0: superseded by trim_end_matches
pub fn trim_right_matches<P>(&self, pat: P) -> &str
trim_end_matchesReturns a string slice with all suffixes that match a pattern repeatedly removed.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Text directionality
A string is a sequence of bytes. ‘Right’ in this context means the last position of that byte string; for a language like Arabic or Hebrew which are ‘right to left’ rather than ‘left to right’, this will be the left side, not the right.
§Examples
Simple patterns:
assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar");
assert_eq!("123foo1bar123".trim_right_matches(char::is_numeric), "123foo1bar");
let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_right_matches(x), "12foo1bar");A more complex pattern, using a closure:
assert_eq!("1fooX".trim_right_matches(|c| c == '1' || c == 'X'), "1foo");1.0.0 · Sourcepub fn parse<F>(&self) -> Result<F, <F as FromStr>::Err>where
F: FromStr,
pub fn parse<F>(&self) -> Result<F, <F as FromStr>::Err>where
F: FromStr,
Parses this string slice into another type.
Because parse is so general, it can cause problems with type
inference. As such, parse is one of the few times you’ll see
the syntax affectionately known as the ‘turbofish’: ::<>. This
helps the inference algorithm understand specifically which type
you’re trying to parse into.
parse can parse into any type that implements the FromStr trait.
§Errors
Will return Err if it’s not possible to parse this string slice into
the desired type.
§Examples
Basic usage:
let four: u32 = "4".parse().unwrap();
assert_eq!(4, four);Using the ‘turbofish’ instead of annotating four:
let four = "4".parse::<u32>();
assert_eq!(Ok(4), four);Failing to parse:
let nope = "j".parse::<u32>();
assert!(nope.is_err());1.23.0 · Sourcepub fn is_ascii(&self) -> bool
pub fn is_ascii(&self) -> bool
Checks if all characters in this string are within the ASCII range.
§Examples
let ascii = "hello!\n";
let non_ascii = "Grüße, Jürgen ❤";
assert!(ascii.is_ascii());
assert!(!non_ascii.is_ascii());Sourcepub fn as_ascii(&self) -> Option<&[AsciiChar]>
🔬This is a nightly-only experimental API. (ascii_char)
pub fn as_ascii(&self) -> Option<&[AsciiChar]>
ascii_char)If this string slice is_ascii, returns it as a slice
of ASCII characters, otherwise returns None.
1.23.0 · Sourcepub fn eq_ignore_ascii_case(&self, other: &str) -> bool
pub fn eq_ignore_ascii_case(&self, other: &str) -> bool
Checks that two strings are an ASCII case-insensitive match.
Same as to_ascii_lowercase(a) == to_ascii_lowercase(b),
but without allocating and copying temporaries.
§Examples
assert!("Ferris".eq_ignore_ascii_case("FERRIS"));
assert!("Ferrös".eq_ignore_ascii_case("FERRöS"));
assert!(!"Ferrös".eq_ignore_ascii_case("FERRÖS"));1.80.0 · Sourcepub fn trim_ascii_start(&self) -> &str
pub fn trim_ascii_start(&self) -> &str
Returns a string slice with leading ASCII whitespace removed.
‘Whitespace’ refers to the definition used by
u8::is_ascii_whitespace.
§Examples
assert_eq!(" \t \u{3000}hello world\n".trim_ascii_start(), "\u{3000}hello world\n");
assert_eq!(" ".trim_ascii_start(), "");
assert_eq!("".trim_ascii_start(), "");1.80.0 · Sourcepub fn trim_ascii_end(&self) -> &str
pub fn trim_ascii_end(&self) -> &str
Returns a string slice with trailing ASCII whitespace removed.
‘Whitespace’ refers to the definition used by
u8::is_ascii_whitespace.
§Examples
assert_eq!("\r hello world\u{3000}\n ".trim_ascii_end(), "\r hello world\u{3000}");
assert_eq!(" ".trim_ascii_end(), "");
assert_eq!("".trim_ascii_end(), "");1.80.0 · Sourcepub fn trim_ascii(&self) -> &str
pub fn trim_ascii(&self) -> &str
Returns a string slice with leading and trailing ASCII whitespace removed.
‘Whitespace’ refers to the definition used by
u8::is_ascii_whitespace.
§Examples
assert_eq!("\r hello world\n ".trim_ascii(), "hello world");
assert_eq!(" ".trim_ascii(), "");
assert_eq!("".trim_ascii(), "");1.34.0 · Sourcepub fn escape_debug(&self) -> EscapeDebug<'_>
pub fn escape_debug(&self) -> EscapeDebug<'_>
Returns an iterator that escapes each char in self with char::escape_debug.
Note: only extended grapheme codepoints that begin the string will be escaped.
§Examples
As an iterator:
for c in "❤\n!".escape_debug() {
print!("{c}");
}
println!();Using println! directly:
println!("{}", "❤\n!".escape_debug());Both are equivalent to:
println!("❤\\n!");Using to_string:
assert_eq!("❤\n!".escape_debug().to_string(), "❤\\n!");1.34.0 · Sourcepub fn escape_default(&self) -> EscapeDefault<'_>
pub fn escape_default(&self) -> EscapeDefault<'_>
Returns an iterator that escapes each char in self with char::escape_default.
§Examples
As an iterator:
for c in "❤\n!".escape_default() {
print!("{c}");
}
println!();Using println! directly:
println!("{}", "❤\n!".escape_default());Both are equivalent to:
println!("\\u{{2764}}\\n!");Using to_string:
assert_eq!("❤\n!".escape_default().to_string(), "\\u{2764}\\n!");1.34.0 · Sourcepub fn escape_unicode(&self) -> EscapeUnicode<'_>
pub fn escape_unicode(&self) -> EscapeUnicode<'_>
Returns an iterator that escapes each char in self with char::escape_unicode.
§Examples
As an iterator:
for c in "❤\n!".escape_unicode() {
print!("{c}");
}
println!();Using println! directly:
println!("{}", "❤\n!".escape_unicode());Both are equivalent to:
println!("\\u{{2764}}\\u{{a}}\\u{{21}}");Using to_string:
assert_eq!("❤\n!".escape_unicode().to_string(), "\\u{2764}\\u{a}\\u{21}");Sourcepub fn substr_range(&self, substr: &str) -> Option<Range<usize>>
🔬This is a nightly-only experimental API. (substr_range)
pub fn substr_range(&self, substr: &str) -> Option<Range<usize>>
substr_range)Returns the range that a substring points to.
Returns None if substr does not point within self.
Unlike str::find, this does not search through the string.
Instead, it uses pointer arithmetic to find where in the string
substr is derived from.
This is useful for extending str::split and similar methods.
Note that this method may return false positives (typically either
Some(0..0) or Some(self.len()..self.len())) if substr is a
zero-length str that points at the beginning or end of another,
independent, str.
§Examples
#![feature(substr_range)]
let data = "a, b, b, a";
let mut iter = data.split(", ").map(|s| data.substr_range(s).unwrap());
assert_eq!(iter.next(), Some(0..1));
assert_eq!(iter.next(), Some(3..4));
assert_eq!(iter.next(), Some(6..7));
assert_eq!(iter.next(), Some(9..10));Sourcepub fn as_str(&self) -> &str
🔬This is a nightly-only experimental API. (str_as_str)
pub fn as_str(&self) -> &str
str_as_str)Returns the same string as a string slice &str.
This method is redundant when used directly on &str, but
it helps dereferencing other string-like types to string slices,
for example references to Box<str> or Arc<str>.
1.0.0 · Sourcepub fn replace<P>(&self, from: P, to: &str) -> Stringwhere
P: Pattern,
pub fn replace<P>(&self, from: P, to: &str) -> Stringwhere
P: Pattern,
Replaces all matches of a pattern with another string.
replace creates a new String, and copies the data from this string slice into it.
While doing so, it attempts to find matches of a pattern. If it finds any, it
replaces them with the replacement string slice.
§Examples
Basic usage:
let s = "this is old";
assert_eq!("this is new", s.replace("old", "new"));
assert_eq!("than an old", s.replace("is", "an"));When the pattern doesn’t match, it returns this string slice as String:
let s = "this is old";
assert_eq!(s, s.replace("cookie monster", "little lamb"));1.16.0 · Sourcepub fn replacen<P>(&self, pat: P, to: &str, count: usize) -> Stringwhere
P: Pattern,
pub fn replacen<P>(&self, pat: P, to: &str, count: usize) -> Stringwhere
P: Pattern,
Replaces first N matches of a pattern with another string.
replacen creates a new String, and copies the data from this string slice into it.
While doing so, it attempts to find matches of a pattern. If it finds any, it
replaces them with the replacement string slice at most count times.
§Examples
Basic usage:
let s = "foo foo 123 foo";
assert_eq!("new new 123 foo", s.replacen("foo", "new", 2));
assert_eq!("faa fao 123 foo", s.replacen('o', "a", 3));
assert_eq!("foo foo new23 foo", s.replacen(char::is_numeric, "new", 1));When the pattern doesn’t match, it returns this string slice as String:
let s = "this is old";
assert_eq!(s, s.replacen("cookie monster", "little lamb", 10));1.2.0 · Sourcepub fn to_lowercase(&self) -> String
pub fn to_lowercase(&self) -> String
Returns the lowercase equivalent of this string slice, as a new String.
‘Lowercase’ is defined according to the terms of the Unicode Derived Core Property
Lowercase.
Since some characters can expand into multiple characters when changing
the case, this function returns a String instead of modifying the
parameter in-place.
§Examples
Basic usage:
let s = "HELLO";
assert_eq!("hello", s.to_lowercase());A tricky example, with sigma:
let sigma = "Σ";
assert_eq!("σ", sigma.to_lowercase());
// but at the end of a word, it's ς, not σ:
let odysseus = "ὈΔΥΣΣΕΎΣ";
assert_eq!("ὀδυσσεύς", odysseus.to_lowercase());Languages without case are not changed:
let new_year = "农历新年";
assert_eq!(new_year, new_year.to_lowercase());1.2.0 · Sourcepub fn to_uppercase(&self) -> String
pub fn to_uppercase(&self) -> String
Returns the uppercase equivalent of this string slice, as a new String.
‘Uppercase’ is defined according to the terms of the Unicode Derived Core Property
Uppercase.
Since some characters can expand into multiple characters when changing
the case, this function returns a String instead of modifying the
parameter in-place.
§Examples
Basic usage:
let s = "hello";
assert_eq!("HELLO", s.to_uppercase());Scripts without case are not changed:
let new_year = "农历新年";
assert_eq!(new_year, new_year.to_uppercase());One character can become multiple:
let s = "tschüß";
assert_eq!("TSCHÜSS", s.to_uppercase());1.16.0 · Sourcepub fn repeat(&self, n: usize) -> String
pub fn repeat(&self, n: usize) -> String
Creates a new String by repeating a string n times.
§Panics
This function will panic if the capacity would overflow.
§Examples
Basic usage:
assert_eq!("abc".repeat(4), String::from("abcabcabcabc"));A panic upon overflow:
// this will panic at runtime
let huge = "0123456789abcdef".repeat(usize::MAX);1.23.0 · Sourcepub fn to_ascii_uppercase(&self) -> String
pub fn to_ascii_uppercase(&self) -> String
Returns a copy of this string where each character is mapped to its ASCII upper case equivalent.
ASCII letters ‘a’ to ‘z’ are mapped to ‘A’ to ‘Z’, but non-ASCII letters are unchanged.
To uppercase the value in-place, use make_ascii_uppercase.
To uppercase ASCII characters in addition to non-ASCII characters, use
to_uppercase.
§Examples
let s = "Grüße, Jürgen ❤";
assert_eq!("GRüßE, JüRGEN ❤", s.to_ascii_uppercase());1.23.0 · Sourcepub fn to_ascii_lowercase(&self) -> String
pub fn to_ascii_lowercase(&self) -> String
Returns a copy of this string where each character is mapped to its ASCII lower case equivalent.
ASCII letters ‘A’ to ‘Z’ are mapped to ‘a’ to ‘z’, but non-ASCII letters are unchanged.
To lowercase the value in-place, use make_ascii_lowercase.
To lowercase ASCII characters in addition to non-ASCII characters, use
to_lowercase.
§Examples
let s = "Grüße, Jürgen ❤";
assert_eq!("grüße, jürgen ❤", s.to_ascii_lowercase());Trait Implementations§
Source§impl<const N: usize, T: AsRef<str>> Add<T> for Str<N>
impl<const N: usize, T: AsRef<str>> Add<T> for Str<N>
Source§fn add(self, s: T) -> Self::Output
fn add(self, s: T) -> Self::Output
Implements the + operator.
let mut s = Str::<6>::from_static_str("foo");
assert_eq!(s + "bar", "foobar");§Panics
This calls Str::push_str_panic and will panic in the same ways.
let mut s = Str::<3>::from_static_str("foo");
// This will panic, not enough capacity!
let _ = s + "bar";Source§impl<const N: usize, T: AsRef<str>> AddAssign<T> for Str<N>
impl<const N: usize, T: AsRef<str>> AddAssign<T> for Str<N>
Source§fn add_assign(&mut self, s: T)
fn add_assign(&mut self, s: T)
Implements the += operator.
let mut s = Str::<6>::from_static_str("foo");
s += "bar";
assert_eq!(s, "foobar");§Panics
This calls Str::push_str_panic and will panic in the same ways.
let mut s = Str::<3>::from_static_str("foo");
// This will panic, not enough capacity!
s += "bar";Source§impl<'de, const N: usize> BorrowDecode<'de> for Str<N>
impl<'de, const N: usize> BorrowDecode<'de> for Str<N>
Source§fn borrow_decode<D: BorrowDecoder<'de>>(
decoder: &mut D,
) -> Result<Self, DecodeError>
fn borrow_decode<D: BorrowDecoder<'de>>( decoder: &mut D, ) -> Result<Self, DecodeError>
Source§impl<const N: usize> BorshDeserialize for Str<N>
impl<const N: usize> BorshDeserialize for Str<N>
Source§fn deserialize_reader<R: Read>(reader: &mut R) -> Result<Self>
fn deserialize_reader<R: Read>(reader: &mut R) -> Result<Self>
let s: Str<5> = Str::from_str_exact("hello");
let bytes = borsh::to_vec(&s).unwrap();
assert_eq!(bytes, borsh::to_vec(&"hello").unwrap());
let s: Str<5> = borsh::from_slice(&bytes).unwrap();
assert_eq!(s, "hello");
assert!(borsh::from_slice::<Str<4>>(&bytes).is_err());Source§fn deserialize(buf: &mut &[u8]) -> Result<Self, Error>
fn deserialize(buf: &mut &[u8]) -> Result<Self, Error>
Source§fn try_from_slice(v: &[u8]) -> Result<Self, Error>
fn try_from_slice(v: &[u8]) -> Result<Self, Error>
fn try_from_reader<R>(reader: &mut R) -> Result<Self, Error>where
R: Read,
Source§impl<const N: usize> BorshSerialize for Str<N>
impl<const N: usize> BorshSerialize for Str<N>
Source§impl<const N: usize> Decode for Str<N>
impl<const N: usize> Decode for Str<N>
Source§fn decode<D: Decoder>(decoder: &mut D) -> Result<Self, DecodeError>
fn decode<D: Decoder>(decoder: &mut D) -> Result<Self, DecodeError>
let s: Str<5> = Str::from_str_exact("hello");
let config = bincode::config::standard();
let bytes = bincode::encode_to_vec(&s, config).unwrap();
assert_eq!(bytes, bincode::encode_to_vec(&"hello", config).unwrap());
let s: Str<5> = bincode::decode_from_slice(&bytes, config).unwrap().0;
assert_eq!(s, "hello");
// Too long.
assert!(bincode::decode_from_slice::<Str<4>, _>(&bytes, config).is_err());Source§impl<'de, const N: usize> Deserialize<'de> for Str<N>
impl<'de, const N: usize> Deserialize<'de> for Str<N>
Source§fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>where
D: Deserializer<'de>,
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>where
D: Deserializer<'de>,
let s: Str<5> = Str::from_str_exact("hello");
let json = serde_json::to_string(&s).unwrap();
assert_eq!(json, "\"hello\"");
let s: Str<5> = serde_json::from_str(&json).unwrap();
assert_eq!(s, "hello");
// Too long.
assert!(serde_json::from_str::<Str<4>>(&json).is_err());Source§impl<'a, const N: usize> Extend<&'a str> for Str<N>
impl<'a, const N: usize> Extend<&'a str> for Str<N>
Source§fn extend<T: IntoIterator<Item = &'a str>>(&mut self, iter: T)
fn extend<T: IntoIterator<Item = &'a str>>(&mut self, iter: T)
Calls Str::push_str_panic for each str.
let mut s = Str::<12>::new();
s.extend(["hello", " ", "world", "!"]);
assert_eq!(s, "hello world!");Source§fn extend_one(&mut self, item: A)
fn extend_one(&mut self, item: A)
extend_one)Source§fn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one)Source§impl<const N: usize> Extend<char> for Str<N>
impl<const N: usize> Extend<char> for Str<N>
Source§fn extend<T: IntoIterator<Item = char>>(&mut self, iter: T)
fn extend<T: IntoIterator<Item = char>>(&mut self, iter: T)
Calls Str::push_char_panic for each char.
let mut s = Str::<3>::new();
s.extend(['a', 'b', 'c']);
assert_eq!(s, "abc");Source§fn extend_one(&mut self, item: A)
fn extend_one(&mut self, item: A)
extend_one)Source§fn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one)Source§impl<const N: usize> Ord for Str<N>
impl<const N: usize> Ord for Str<N>
Source§impl<const N: usize> PartialOrd for Str<N>
impl<const N: usize> PartialOrd for Str<N>
Source§impl<const N: usize> TryFrom<&[u8]> for Str<N>
impl<const N: usize> TryFrom<&[u8]> for Str<N>
Source§fn try_from(bytes: &[u8]) -> Result<Self, Self::Error>
fn try_from(bytes: &[u8]) -> Result<Self, Self::Error>
This takes in a [[u8]] of any length (equal to or less than N)
and will return a Str with that same string.
If this function fails, Result::Err is returned with how many extra bytes couldn’t fit.
If the Err is 0, that means the string was not valid UTF-8.
// Input string is 4 in length, we can't copy it.
// There is 1 extra byte that can't fit.
assert_eq!(Str::<3>::try_from(b"abcd"), Err(1));
assert_eq!(Str::<3>::try_from(b"abc").unwrap(), "abc");§Compile-time panic
This function will panic at compile time if N > 255.
// Compile error!
Str::<256>::try_from(b"");Source§impl<const N: usize> TryFrom<&Arc<[u8]>> for Str<N>
impl<const N: usize> TryFrom<&Arc<[u8]>> for Str<N>
Source§fn try_from(bytes: &Arc<[u8]>) -> Result<Self, Self::Error>
fn try_from(bytes: &Arc<[u8]>) -> Result<Self, Self::Error>
This takes in a [[u8]] of any length (equal to or less than N)
and will return a Str with that same string.
If this function fails, Result::Err is returned with how many extra bytes couldn’t fit.
If the Err is 0, that means the string was not valid UTF-8.
// Input string is 4 in length, we can't copy it.
// There is 1 extra byte that can't fit.
assert_eq!(Str::<3>::try_from(b"abcd"), Err(1));
assert_eq!(Str::<3>::try_from(b"abc").unwrap(), "abc");§Compile-time panic
This function will panic at compile time if N > 255.
// Compile error!
Str::<256>::try_from(b"");Source§impl<const N: usize> TryFrom<&Arc<str>> for Str<N>
impl<const N: usize> TryFrom<&Arc<str>> for Str<N>
Source§fn try_from(string: &Arc<str>) -> Result<Self, Self::Error>
fn try_from(string: &Arc<str>) -> Result<Self, Self::Error>
This takes in a &str of any length (equal to or less than N)
and will return a Str with that same string.
If this function fails, Result::Err is returned with how many extra bytes couldn’t fit.
// Input string is 4 in length, we can't copy it.
// There is 1 extra byte that can't fit.
assert_eq!(Str::<3>::try_from("abcd"), Err(1));
assert_eq!(Str::<3>::try_from("abc").unwrap(), "abc");§Compile-time panic
This function will panic at compile time if N > 255.
// Compile error!
Str::<256>::try_from("");Source§impl<const N: usize> TryFrom<&Box<[u8]>> for Str<N>
impl<const N: usize> TryFrom<&Box<[u8]>> for Str<N>
Source§fn try_from(bytes: &Box<[u8]>) -> Result<Self, Self::Error>
fn try_from(bytes: &Box<[u8]>) -> Result<Self, Self::Error>
This takes in a [[u8]] of any length (equal to or less than N)
and will return a Str with that same string.
If this function fails, Result::Err is returned with how many extra bytes couldn’t fit.
If the Err is 0, that means the string was not valid UTF-8.
// Input string is 4 in length, we can't copy it.
// There is 1 extra byte that can't fit.
assert_eq!(Str::<3>::try_from(b"abcd"), Err(1));
assert_eq!(Str::<3>::try_from(b"abc").unwrap(), "abc");§Compile-time panic
This function will panic at compile time if N > 255.
// Compile error!
Str::<256>::try_from(b"");Source§impl<const N: usize> TryFrom<&Box<str>> for Str<N>
impl<const N: usize> TryFrom<&Box<str>> for Str<N>
Source§fn try_from(string: &Box<str>) -> Result<Self, Self::Error>
fn try_from(string: &Box<str>) -> Result<Self, Self::Error>
This takes in a &str of any length (equal to or less than N)
and will return a Str with that same string.
If this function fails, Result::Err is returned with how many extra bytes couldn’t fit.
// Input string is 4 in length, we can't copy it.
// There is 1 extra byte that can't fit.
assert_eq!(Str::<3>::try_from("abcd"), Err(1));
assert_eq!(Str::<3>::try_from("abc").unwrap(), "abc");§Compile-time panic
This function will panic at compile time if N > 255.
// Compile error!
Str::<256>::try_from("");Source§impl<const N: usize> TryFrom<&Cow<'_, [u8]>> for Str<N>
impl<const N: usize> TryFrom<&Cow<'_, [u8]>> for Str<N>
Source§fn try_from(bytes: &Cow<'_, [u8]>) -> Result<Self, Self::Error>
fn try_from(bytes: &Cow<'_, [u8]>) -> Result<Self, Self::Error>
This takes in a [[u8]] of any length (equal to or less than N)
and will return a Str with that same string.
If this function fails, Result::Err is returned with how many extra bytes couldn’t fit.
If the Err is 0, that means the string was not valid UTF-8.
// Input string is 4 in length, we can't copy it.
// There is 1 extra byte that can't fit.
assert_eq!(Str::<3>::try_from(b"abcd"), Err(1));
assert_eq!(Str::<3>::try_from(b"abc").unwrap(), "abc");§Compile-time panic
This function will panic at compile time if N > 255.
// Compile error!
Str::<256>::try_from(b"");Source§impl<const N: usize> TryFrom<&Cow<'_, str>> for Str<N>
impl<const N: usize> TryFrom<&Cow<'_, str>> for Str<N>
Source§fn try_from(string: &Cow<'_, str>) -> Result<Self, Self::Error>
fn try_from(string: &Cow<'_, str>) -> Result<Self, Self::Error>
This takes in a &str of any length (equal to or less than N)
and will return a Str with that same string.
If this function fails, Result::Err is returned with how many extra bytes couldn’t fit.
// Input string is 4 in length, we can't copy it.
// There is 1 extra byte that can't fit.
assert_eq!(Str::<3>::try_from("abcd"), Err(1));
assert_eq!(Str::<3>::try_from("abc").unwrap(), "abc");§Compile-time panic
This function will panic at compile time if N > 255.
// Compile error!
Str::<256>::try_from("");Source§impl<const N: usize> TryFrom<&Rc<[u8]>> for Str<N>
impl<const N: usize> TryFrom<&Rc<[u8]>> for Str<N>
Source§fn try_from(bytes: &Rc<[u8]>) -> Result<Self, Self::Error>
fn try_from(bytes: &Rc<[u8]>) -> Result<Self, Self::Error>
This takes in a [[u8]] of any length (equal to or less than N)
and will return a Str with that same string.
If this function fails, Result::Err is returned with how many extra bytes couldn’t fit.
If the Err is 0, that means the string was not valid UTF-8.
// Input string is 4 in length, we can't copy it.
// There is 1 extra byte that can't fit.
assert_eq!(Str::<3>::try_from(b"abcd"), Err(1));
assert_eq!(Str::<3>::try_from(b"abc").unwrap(), "abc");§Compile-time panic
This function will panic at compile time if N > 255.
// Compile error!
Str::<256>::try_from(b"");Source§impl<const N: usize> TryFrom<&Rc<str>> for Str<N>
impl<const N: usize> TryFrom<&Rc<str>> for Str<N>
Source§fn try_from(string: &Rc<str>) -> Result<Self, Self::Error>
fn try_from(string: &Rc<str>) -> Result<Self, Self::Error>
This takes in a &str of any length (equal to or less than N)
and will return a Str with that same string.
If this function fails, Result::Err is returned with how many extra bytes couldn’t fit.
// Input string is 4 in length, we can't copy it.
// There is 1 extra byte that can't fit.
assert_eq!(Str::<3>::try_from("abcd"), Err(1));
assert_eq!(Str::<3>::try_from("abc").unwrap(), "abc");§Compile-time panic
This function will panic at compile time if N > 255.
// Compile error!
Str::<256>::try_from("");Source§impl<const N: usize> TryFrom<&String> for Str<N>
impl<const N: usize> TryFrom<&String> for Str<N>
Source§fn try_from(string: &String) -> Result<Self, Self::Error>
fn try_from(string: &String) -> Result<Self, Self::Error>
This takes in a &str of any length (equal to or less than N)
and will return a Str with that same string.
If this function fails, Result::Err is returned with how many extra bytes couldn’t fit.
// Input string is 4 in length, we can't copy it.
// There is 1 extra byte that can't fit.
assert_eq!(Str::<3>::try_from("abcd"), Err(1));
assert_eq!(Str::<3>::try_from("abc").unwrap(), "abc");§Compile-time panic
This function will panic at compile time if N > 255.
// Compile error!
Str::<256>::try_from("");Source§impl<const N: usize> TryFrom<&Vec<u8>> for Str<N>
impl<const N: usize> TryFrom<&Vec<u8>> for Str<N>
Source§fn try_from(bytes: &Vec<u8>) -> Result<Self, Self::Error>
fn try_from(bytes: &Vec<u8>) -> Result<Self, Self::Error>
This takes in a [[u8]] of any length (equal to or less than N)
and will return a Str with that same string.
If this function fails, Result::Err is returned with how many extra bytes couldn’t fit.
If the Err is 0, that means the string was not valid UTF-8.
// Input string is 4 in length, we can't copy it.
// There is 1 extra byte that can't fit.
assert_eq!(Str::<3>::try_from(b"abcd"), Err(1));
assert_eq!(Str::<3>::try_from(b"abc").unwrap(), "abc");§Compile-time panic
This function will panic at compile time if N > 255.
// Compile error!
Str::<256>::try_from(b"");Source§impl<const N: usize> TryFrom<&str> for Str<N>
impl<const N: usize> TryFrom<&str> for Str<N>
Source§fn try_from(string: &str) -> Result<Self, Self::Error>
fn try_from(string: &str) -> Result<Self, Self::Error>
This takes in a &str of any length (equal to or less than N)
and will return a Str with that same string.
If this function fails, Result::Err is returned with how many extra bytes couldn’t fit.
// Input string is 4 in length, we can't copy it.
// There is 1 extra byte that can't fit.
assert_eq!(Str::<3>::try_from("abcd"), Err(1));
assert_eq!(Str::<3>::try_from("abc").unwrap(), "abc");§Compile-time panic
This function will panic at compile time if N > 255.
// Compile error!
Str::<256>::try_from("");Source§impl<const N: usize> TryFrom<Arc<[u8]>> for Str<N>
impl<const N: usize> TryFrom<Arc<[u8]>> for Str<N>
Source§fn try_from(bytes: Arc<[u8]>) -> Result<Self, Self::Error>
fn try_from(bytes: Arc<[u8]>) -> Result<Self, Self::Error>
This takes in a [[u8]] of any length (equal to or less than N)
and will return a Str with that same string.
If this function fails, Result::Err is returned with how many extra bytes couldn’t fit.
If the Err is 0, that means the string was not valid UTF-8.
// Input string is 4 in length, we can't copy it.
// There is 1 extra byte that can't fit.
assert_eq!(Str::<3>::try_from(b"abcd"), Err(1));
assert_eq!(Str::<3>::try_from(b"abc").unwrap(), "abc");§Compile-time panic
This function will panic at compile time if N > 255.
// Compile error!
Str::<256>::try_from(b"");Source§impl<const N: usize> TryFrom<Arc<str>> for Str<N>
impl<const N: usize> TryFrom<Arc<str>> for Str<N>
Source§fn try_from(string: Arc<str>) -> Result<Self, Self::Error>
fn try_from(string: Arc<str>) -> Result<Self, Self::Error>
This takes in a &str of any length (equal to or less than N)
and will return a Str with that same string.
If this function fails, Result::Err is returned with how many extra bytes couldn’t fit.
// Input string is 4 in length, we can't copy it.
// There is 1 extra byte that can't fit.
assert_eq!(Str::<3>::try_from("abcd"), Err(1));
assert_eq!(Str::<3>::try_from("abc").unwrap(), "abc");§Compile-time panic
This function will panic at compile time if N > 255.
// Compile error!
Str::<256>::try_from("");Source§impl<const N: usize> TryFrom<Box<[u8]>> for Str<N>
impl<const N: usize> TryFrom<Box<[u8]>> for Str<N>
Source§fn try_from(bytes: Box<[u8]>) -> Result<Self, Self::Error>
fn try_from(bytes: Box<[u8]>) -> Result<Self, Self::Error>
This takes in a [[u8]] of any length (equal to or less than N)
and will return a Str with that same string.
If this function fails, Result::Err is returned with how many extra bytes couldn’t fit.
If the Err is 0, that means the string was not valid UTF-8.
// Input string is 4 in length, we can't copy it.
// There is 1 extra byte that can't fit.
assert_eq!(Str::<3>::try_from(b"abcd"), Err(1));
assert_eq!(Str::<3>::try_from(b"abc").unwrap(), "abc");§Compile-time panic
This function will panic at compile time if N > 255.
// Compile error!
Str::<256>::try_from(b"");Source§impl<const N: usize> TryFrom<Box<str>> for Str<N>
impl<const N: usize> TryFrom<Box<str>> for Str<N>
Source§fn try_from(string: Box<str>) -> Result<Self, Self::Error>
fn try_from(string: Box<str>) -> Result<Self, Self::Error>
This takes in a &str of any length (equal to or less than N)
and will return a Str with that same string.
If this function fails, Result::Err is returned with how many extra bytes couldn’t fit.
// Input string is 4 in length, we can't copy it.
// There is 1 extra byte that can't fit.
assert_eq!(Str::<3>::try_from("abcd"), Err(1));
assert_eq!(Str::<3>::try_from("abc").unwrap(), "abc");§Compile-time panic
This function will panic at compile time if N > 255.
// Compile error!
Str::<256>::try_from("");Source§impl<const N: usize> TryFrom<Cow<'_, [u8]>> for Str<N>
impl<const N: usize> TryFrom<Cow<'_, [u8]>> for Str<N>
Source§fn try_from(bytes: Cow<'_, [u8]>) -> Result<Self, Self::Error>
fn try_from(bytes: Cow<'_, [u8]>) -> Result<Self, Self::Error>
This takes in a [[u8]] of any length (equal to or less than N)
and will return a Str with that same string.
If this function fails, Result::Err is returned with how many extra bytes couldn’t fit.
If the Err is 0, that means the string was not valid UTF-8.
// Input string is 4 in length, we can't copy it.
// There is 1 extra byte that can't fit.
assert_eq!(Str::<3>::try_from(b"abcd"), Err(1));
assert_eq!(Str::<3>::try_from(b"abc").unwrap(), "abc");§Compile-time panic
This function will panic at compile time if N > 255.
// Compile error!
Str::<256>::try_from(b"");Source§impl<const N: usize> TryFrom<Cow<'_, str>> for Str<N>
impl<const N: usize> TryFrom<Cow<'_, str>> for Str<N>
Source§fn try_from(string: Cow<'_, str>) -> Result<Self, Self::Error>
fn try_from(string: Cow<'_, str>) -> Result<Self, Self::Error>
This takes in a &str of any length (equal to or less than N)
and will return a Str with that same string.
If this function fails, Result::Err is returned with how many extra bytes couldn’t fit.
// Input string is 4 in length, we can't copy it.
// There is 1 extra byte that can't fit.
assert_eq!(Str::<3>::try_from("abcd"), Err(1));
assert_eq!(Str::<3>::try_from("abc").unwrap(), "abc");§Compile-time panic
This function will panic at compile time if N > 255.
// Compile error!
Str::<256>::try_from("");Source§impl<const N: usize> TryFrom<Rc<[u8]>> for Str<N>
impl<const N: usize> TryFrom<Rc<[u8]>> for Str<N>
Source§fn try_from(bytes: Rc<[u8]>) -> Result<Self, Self::Error>
fn try_from(bytes: Rc<[u8]>) -> Result<Self, Self::Error>
This takes in a [[u8]] of any length (equal to or less than N)
and will return a Str with that same string.
If this function fails, Result::Err is returned with how many extra bytes couldn’t fit.
If the Err is 0, that means the string was not valid UTF-8.
// Input string is 4 in length, we can't copy it.
// There is 1 extra byte that can't fit.
assert_eq!(Str::<3>::try_from(b"abcd"), Err(1));
assert_eq!(Str::<3>::try_from(b"abc").unwrap(), "abc");§Compile-time panic
This function will panic at compile time if N > 255.
// Compile error!
Str::<256>::try_from(b"");Source§impl<const N: usize> TryFrom<Rc<str>> for Str<N>
impl<const N: usize> TryFrom<Rc<str>> for Str<N>
Source§fn try_from(string: Rc<str>) -> Result<Self, Self::Error>
fn try_from(string: Rc<str>) -> Result<Self, Self::Error>
This takes in a &str of any length (equal to or less than N)
and will return a Str with that same string.
If this function fails, Result::Err is returned with how many extra bytes couldn’t fit.
// Input string is 4 in length, we can't copy it.
// There is 1 extra byte that can't fit.
assert_eq!(Str::<3>::try_from("abcd"), Err(1));
assert_eq!(Str::<3>::try_from("abc").unwrap(), "abc");§Compile-time panic
This function will panic at compile time if N > 255.
// Compile error!
Str::<256>::try_from("");Source§impl<const N: usize> TryFrom<String> for Str<N>
impl<const N: usize> TryFrom<String> for Str<N>
Source§fn try_from(string: String) -> Result<Self, Self::Error>
fn try_from(string: String) -> Result<Self, Self::Error>
This takes in a &str of any length (equal to or less than N)
and will return a Str with that same string.
If this function fails, Result::Err is returned with how many extra bytes couldn’t fit.
// Input string is 4 in length, we can't copy it.
// There is 1 extra byte that can't fit.
assert_eq!(Str::<3>::try_from("abcd"), Err(1));
assert_eq!(Str::<3>::try_from("abc").unwrap(), "abc");§Compile-time panic
This function will panic at compile time if N > 255.
// Compile error!
Str::<256>::try_from("");Source§impl<const N: usize> TryFrom<Vec<u8>> for Str<N>
impl<const N: usize> TryFrom<Vec<u8>> for Str<N>
Source§fn try_from(bytes: Vec<u8>) -> Result<Self, Self::Error>
fn try_from(bytes: Vec<u8>) -> Result<Self, Self::Error>
This takes in a [[u8]] of any length (equal to or less than N)
and will return a Str with that same string.
If this function fails, Result::Err is returned with how many extra bytes couldn’t fit.
If the Err is 0, that means the string was not valid UTF-8.
// Input string is 4 in length, we can't copy it.
// There is 1 extra byte that can't fit.
assert_eq!(Str::<3>::try_from(b"abcd"), Err(1));
assert_eq!(Str::<3>::try_from(b"abc").unwrap(), "abc");§Compile-time panic
This function will panic at compile time if N > 255.
// Compile error!
Str::<256>::try_from(b"");Source§impl<const N: usize> Write for Str<N>
impl<const N: usize> Write for Str<N>
Source§fn write_str(&mut self, s: &str) -> Result
fn write_str(&mut self, s: &str) -> Result
Calls Str::push_str()
let mut s = Str::<12>::new();
std::fmt::Write::write_str(&mut s, "hello world!").unwrap();
assert_eq!(s, "hello world!");Source§fn write_char(&mut self, c: char) -> Result
fn write_char(&mut self, c: char) -> Result
Calls Str::push_char()
let mut s = Str::<3>::new();
std::fmt::Write::write_char(&mut s, 'で').unwrap();
assert_eq!(s, "で");impl<const N: usize> Copy for Str<N>
impl<const N: usize> Eq for Str<N>
impl<const N: usize> StructuralPartialEq for Str<N>
Auto Trait Implementations§
impl<const N: usize> Freeze for Str<N>
impl<const N: usize> RefUnwindSafe for Str<N>
impl<const N: usize> Send for Str<N>
impl<const N: usize> Sync for Str<N>
impl<const N: usize> Unpin for Str<N>
impl<const N: usize> UnwindSafe for Str<N>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> HeadTail for T
impl<T> HeadTail for T
Source§fn head_tail_dot(&self, head: usize, tail: usize) -> HeadTailDot<'_>
fn head_tail_dot(&self, head: usize, tail: usize) -> HeadTailDot<'_>
Source§impl<T> ToCompactString for Twhere
T: Display,
impl<T> ToCompactString for Twhere
T: Display,
Source§fn to_compact_string(&self) -> CompactString
fn to_compact_string(&self) -> CompactString
CompactString. Read more