1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
//! Thread Safe Reactive Data Structure

mod macros;

use std::{
    collections::hash_map::DefaultHasher,
    fmt::Debug,
    hash::{Hash, Hasher},
    sync::{Arc, Mutex},
};

/// Thread Safe Reactive Data Structure using the observer pattern
#[derive(Clone, Default)]
pub struct Reactive<T> {
    inner: Arc<Mutex<ReactiveInner<T>>>,
}

impl<T> Reactive<T> {
    /// Constructs a new Reactive<T>
    /// # Examples
    /// ```
    /// use reactivate::Reactive;
    ///
    /// let r = Reactive::new("🦀");
    /// ```
    pub fn new(value: T) -> Self {
        Self {
            inner: Arc::new(Mutex::new(ReactiveInner::new(value))),
        }
    }

    /// Adds a new observer to the reactive.
    /// the observer functions are called whenever the value inside the Reactive is updated
    /// # Examples
    /// ```
    /// use reactivate::Reactive;
    /// use std::sync::{Arc, Mutex};
    ///
    /// let r: Reactive<String> = Reactive::default();
    /// // Arc<Mutex<T>> is used to make the vector thread safe
    /// // because Reactive as a whole must be thread safe
    /// let change_log: Arc<Mutex<Vec<String>>> = Default::default();
    ///
    /// // add an observer function to keep a log of all the updates done to the reactive.
    /// r.add_observer({
    ///     let change_log = change_log.clone();
    ///     move |val| change_log.lock().unwrap().push(val.clone())
    /// });
    ///
    /// r.update(|_| String::from("🦀"));
    /// r.update(|_| String::from("🦞"));
    ///
    /// assert_eq!(
    /// vec![String::from("🦀"), String::from("🦞")],
    ///     change_log.lock().unwrap().clone()
    /// );
    /// ```
    pub fn add_observer(&self, f: impl FnMut(&T) + Send + 'static) {
        self.inner.lock().unwrap().observers.push(Box::new(f));
    }

    /// Update the value inside the reactive and notify all the observers
    /// by calling the added observer functions in the sequence they were added
    /// without checking if the value is changed after applying the provided function
    ///
    /// # Examples
    /// ```
    /// use reactivate::Reactive;
    ///
    /// let r = Reactive::new(10);
    /// let d = r.derive(|val| val + 5);
    ///
    /// // notifies the observers as usual because value changed from 10 to 20
    /// r.update_unchecked(|_| 20);
    ///
    /// assert_eq!(25, d.value());
    ///
    /// // would still notify the observers even if the value didn't change
    /// r.update_unchecked(|_| 20);
    ///
    /// assert_eq!(25, d.value());
    /// ```
    ///
    /// # Reasons to use
    /// `update_unchecked` doesn't require `PartialEq` trait bounds on `T`
    /// because the old value and the new value (after applying `f`) aren't compared.
    ///
    /// It is also faster than `update` for that reason
    pub fn update_unchecked(&self, f: impl Fn(&T) -> T) {
        self.inner.lock().unwrap().update_unchecked(f);
    }

    /// Updates the value inside inplace without creating a new clone/copy and notify
    /// all the observers by calling the added observer functions in the sequence they were added
    /// without checking if the value is changed after applying the provided function.
    ///
    /// Perfer this when the datatype inside is expensive to clone, like a vector.
    ///
    /// # Examples
    /// ```
    /// use reactivate::Reactive;
    ///
    /// let r = Reactive::new(vec![1, 2, 3]);
    /// let d = r.derive(|nums| nums.iter().sum::<i32>());
    ///
    /// // notifies the observers as usual because value changed from [1, 2, 3] to [1, 2, 3, 4, 5, 6]
    /// r.update_inplace_unchecked(|nums| {
    ///     nums.push(4);
    ///     nums.push(5);
    ///     nums.push(6);
    /// });
    ///
    /// assert_eq!(21, d.value());
    ///
    /// // would still notify the observers even if the value didn't change
    /// r.update_inplace_unchecked(|nums| {
    ///     nums.push(100);
    ///     nums.pop();
    /// });
    ///
    /// assert_eq!(21, d.value());
    /// ```
    ///
    /// # Reasons to use
    /// `update_inplace_unchecked` doesn't require `Hash` trait bounds on `T`
    /// because the hashes of old value and the new value (after applying `f`)
    /// aren't calculated and compared.
    ///
    /// It is also faster than `update_inplace` for that reason
    pub fn update_inplace_unchecked(&self, f: impl Fn(&mut T)) {
        self.inner.lock().unwrap().update_inplace_unchecked(f);
    }
}

impl<T: Clone> Reactive<T> {
    /// Returns a clone/copy of the value inside the reactive
    ///
    /// # Examples
    /// ```
    /// use reactivate::Reactive;
    ///
    /// let r = Reactive::new(String::from("🦀"));
    /// assert_eq!("🦀", r.value());
    /// ```
    pub fn value(&self) -> T {
        self.inner.lock().unwrap().value.clone()
    }

    /// derive a new child reactive that changes whenever the parent reactive changes.
    /// (achieved by adding an observer function to the parent reactive behind the scenes)
    ///
    /// # Examples
    /// ```
    /// use reactivate::Reactive;
    ///
    /// let r = Reactive::new(10);
    /// let d = r.derive(|val| val + 5);
    ///
    /// assert_eq!(15, d.value());
    /// ```
    pub fn derive<U: Default + Clone + PartialEq + Send + 'static>(
        &self,
        f: impl Fn(&T) -> U + Send + 'static,
    ) -> Reactive<U> {
        let derived_val = f(&self.value());
        let derived: Reactive<U> = Reactive::new(derived_val);

        self.add_observer({
            let derived = derived.clone();
            move |value| derived.update(|_| f(value))
        });

        derived
    }
}

impl<T: PartialEq> Reactive<T> {
    /// Update the value inside the reactive and notify all the observers
    /// by calling the added observer functions in the sequence they were added
    /// **ONLY** if the value changes after applying the provided function
    ///
    /// # Examples
    /// ```
    /// use reactivate::Reactive;
    ///
    /// let r = Reactive::new(10);
    /// let d = r.derive(|val| val + 5);
    ///
    /// r.update(|_| 20);
    ///
    /// assert_eq!(25, d.value());
    /// ```
    pub fn update(&self, f: impl Fn(&T) -> T) {
        self.inner.lock().unwrap().update(f);
    }
}

impl<T: Hash> Reactive<T> {
    /// Updates the value inside inplace without creating a new clone/copy and notify
    /// all the observers by calling the added observer functions in the sequence they were added
    /// **ONLY** if the value changes after applying the provided function.
    ///
    /// Perfer this when the datatype inside is expensive to clone, like a vector.
    ///
    /// # Examples
    /// ```
    /// use reactivate::Reactive;
    ///
    /// let r = Reactive::new(vec![1, 2, 3]);
    /// let d = r.derive(|nums| nums.iter().sum::<i32>());
    ///
    /// r.update_inplace(|nums| {
    ///     nums.push(4);
    ///     nums.push(5);
    ///     nums.push(6);
    /// });
    ///
    /// assert_eq!(21, d.value());
    /// ```
    pub fn update_inplace(&self, f: impl Fn(&mut T)) {
        self.inner.lock().unwrap().update_inplace(f);
    }
}

impl<T: Debug> Debug for Reactive<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_tuple("Reactive")
            .field(&self.inner.lock().unwrap().value)
            .finish()
    }
}

/// This trait is used for implementing variadic generics.
///
/// The main goal is to convert a tuple (can be implemented for other types too)
/// of reactives of arbitrary size
///     `(&Reactive<usize>, &Reactive<String>, &Reactive<f64>, ...)`
///
/// to a tuple of their inner values
///     `(usize, String, f64, ...)`
///
/// Default implementations for tuples is already provided (see `impl_merge_for_tuple` macro)
/// ```
/// use reactivate::{Reactive, Merge};
///
/// let r1: Reactive<usize> = Reactive::default();
/// let r2: Reactive<String> = Reactive::default();
/// let r3: Reactive<f64> = Reactive::default();
///
/// let r: Reactive<(usize, String, f64)> = (&r1, &r2, &r3).merge();
///
/// ```
pub trait Merge {
    type Output;
    fn merge(self) -> Reactive<Self::Output>;
}

/// The purpose of this struct is to reduce boilerplate code when working with `Reactive`
#[derive(Default)]
struct ReactiveInner<T> {
    value: T,
    observers: Vec<Box<dyn FnMut(&T) + Send>>,
}

impl<T> ReactiveInner<T> {
    const fn new(value: T) -> Self {
        Self {
            value,
            observers: vec![],
        }
    }

    fn update_unchecked(&mut self, f: impl Fn(&T) -> T) {
        self.value = f(&self.value);
        for obs in &mut self.observers {
            obs(&self.value);
        }
    }

    fn update_inplace_unchecked(&mut self, f: impl Fn(&mut T)) {
        f(&mut self.value);
        for obs in &mut self.observers {
            obs(&self.value);
        }
    }
}

impl<T: PartialEq> ReactiveInner<T> {
    fn update(&mut self, f: impl Fn(&T) -> T) {
        let new_value = f(&self.value);
        if new_value != self.value {
            self.value = new_value;
            for obs in &mut self.observers {
                obs(&self.value);
            }
        }
    }
}

impl<T: Hash> ReactiveInner<T> {
    fn update_inplace(&mut self, f: impl Fn(&mut T)) {
        let old_hash = {
            let mut hasher = DefaultHasher::new();
            self.value.hash(&mut hasher);
            hasher.finish()
        };

        f(&mut self.value);

        let new_hash = {
            let mut hasher = DefaultHasher::new();
            self.value.hash(&mut hasher);
            hasher.finish()
        };

        if old_hash != new_hash {
            for obs in &mut self.observers {
                obs(&self.value);
            }
        }
    }
}