1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
//! Thread Safe Reactive Data Structure
mod macros;
use std::{
collections::hash_map::DefaultHasher,
fmt::Debug,
hash::{Hash, Hasher},
sync::{Arc, Mutex},
};
/// Thread Safe Reactive Data Structure using the observer pattern
#[derive(Clone, Default)]
pub struct Reactive<T> {
inner: Arc<Mutex<ReactiveInner<T>>>,
}
impl<T> Reactive<T> {
/// Constructs a new Reactive<T>
/// # Examples
/// ```
/// use reactivate::Reactive;
///
/// let r = Reactive::new("🦀");
/// ```
pub fn new(value: T) -> Self {
Self {
inner: Arc::new(Mutex::new(ReactiveInner::new(value))),
}
}
/// Adds a new observer to the reactive.
/// the observer functions are called whenever the value inside the Reactive is updated
/// # Examples
/// ```
/// use reactivate::Reactive;
/// use std::sync::{Arc, Mutex};
///
/// let r: Reactive<String> = Reactive::default();
/// // Arc<Mutex<T>> is used to make the vector thread safe
/// // because Reactive as a whole must be thread safe
/// let change_log: Arc<Mutex<Vec<String>>> = Default::default();
///
/// // add an observer function to keep a log of all the updates done to the reactive.
/// r.add_observer({
/// let change_log = change_log.clone();
/// move |val| change_log.lock().unwrap().push(val.clone())
/// });
///
/// r.update(|_| String::from("🦀"));
/// r.update(|_| String::from("🦞"));
///
/// assert_eq!(
/// vec![String::from("🦀"), String::from("🦞")],
/// change_log.lock().unwrap().clone()
/// );
/// ```
pub fn add_observer(&self, f: impl FnMut(&T) + Send + 'static) {
self.inner.lock().unwrap().observers.push(Box::new(f));
}
/// Update the value inside the reactive and notify all the observers
/// by calling the added observer functions in the sequence they were added
/// without checking if the value is changed after applying the provided function
///
/// # Examples
/// ```
/// use reactivate::Reactive;
///
/// let r = Reactive::new(10);
/// let d = r.derive(|val| val + 5);
///
/// // notifies the observers as usual because value changed from 10 to 20
/// r.update_unchecked(|_| 20);
///
/// assert_eq!(25, d.value());
///
/// // would still notify the observers even if the value didn't change
/// r.update_unchecked(|_| 20);
///
/// assert_eq!(25, d.value());
/// ```
///
/// # Reasons to use
/// `update_unchecked` doesn't require `PartialEq` trait bounds on `T`
/// because the old value and the new value (after applying `f`) aren't compared.
///
/// It is also faster than `update` for that reason
pub fn update_unchecked(&self, f: impl Fn(&T) -> T) {
self.inner.lock().unwrap().update_unchecked(f);
}
/// Updates the value inside inplace without creating a new clone/copy and notify
/// all the observers by calling the added observer functions in the sequence they were added
/// without checking if the value is changed after applying the provided function.
///
/// Perfer this when the datatype inside is expensive to clone, like a vector.
///
/// # Examples
/// ```
/// use reactivate::Reactive;
///
/// let r = Reactive::new(vec![1, 2, 3]);
/// let d = r.derive(|nums| nums.iter().sum::<i32>());
///
/// // notifies the observers as usual because value changed from [1, 2, 3] to [1, 2, 3, 4, 5, 6]
/// r.update_inplace_unchecked(|nums| {
/// nums.push(4);
/// nums.push(5);
/// nums.push(6);
/// });
///
/// assert_eq!(21, d.value());
///
/// // would still notify the observers even if the value didn't change
/// r.update_inplace_unchecked(|nums| {
/// nums.push(100);
/// nums.pop();
/// });
///
/// assert_eq!(21, d.value());
/// ```
///
/// # Reasons to use
/// `update_inplace_unchecked` doesn't require `Hash` trait bounds on `T`
/// because the hashes of old value and the new value (after applying `f`)
/// aren't calculated and compared.
///
/// It is also faster than `update_inplace` for that reason
pub fn update_inplace_unchecked(&self, f: impl Fn(&mut T)) {
self.inner.lock().unwrap().update_inplace_unchecked(f);
}
}
impl<T: Clone> Reactive<T> {
/// Returns a clone/copy of the value inside the reactive
///
/// # Examples
/// ```
/// use reactivate::Reactive;
///
/// let r = Reactive::new(String::from("🦀"));
/// assert_eq!("🦀", r.value());
/// ```
pub fn value(&self) -> T {
self.inner.lock().unwrap().value.clone()
}
/// derive a new child reactive that changes whenever the parent reactive changes.
/// (achieved by adding an observer function to the parent reactive behind the scenes)
///
/// # Examples
/// ```
/// use reactivate::Reactive;
///
/// let r = Reactive::new(10);
/// let d = r.derive(|val| val + 5);
///
/// assert_eq!(15, d.value());
/// ```
pub fn derive<U: Default + Clone + PartialEq + Send + 'static>(
&self,
f: impl Fn(&T) -> U + Send + 'static,
) -> Reactive<U> {
let derived_val = f(&self.value());
let derived: Reactive<U> = Reactive::new(derived_val);
self.add_observer({
let derived = derived.clone();
move |value| derived.update(|_| f(value))
});
derived
}
}
impl<T: PartialEq> Reactive<T> {
/// Update the value inside the reactive and notify all the observers
/// by calling the added observer functions in the sequence they were added
/// **ONLY** if the value changes after applying the provided function
///
/// # Examples
/// ```
/// use reactivate::Reactive;
///
/// let r = Reactive::new(10);
/// let d = r.derive(|val| val + 5);
///
/// r.update(|_| 20);
///
/// assert_eq!(25, d.value());
/// ```
pub fn update(&self, f: impl Fn(&T) -> T) {
self.inner.lock().unwrap().update(f);
}
}
impl<T: Hash> Reactive<T> {
/// Updates the value inside inplace without creating a new clone/copy and notify
/// all the observers by calling the added observer functions in the sequence they were added
/// **ONLY** if the value changes after applying the provided function.
///
/// Perfer this when the datatype inside is expensive to clone, like a vector.
///
/// # Examples
/// ```
/// use reactivate::Reactive;
///
/// let r = Reactive::new(vec![1, 2, 3]);
/// let d = r.derive(|nums| nums.iter().sum::<i32>());
///
/// r.update_inplace(|nums| {
/// nums.push(4);
/// nums.push(5);
/// nums.push(6);
/// });
///
/// assert_eq!(21, d.value());
/// ```
pub fn update_inplace(&self, f: impl Fn(&mut T)) {
self.inner.lock().unwrap().update_inplace(f);
}
}
impl<T: Debug> Debug for Reactive<T> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_tuple("Reactive")
.field(&self.inner.lock().unwrap().value)
.finish()
}
}
/// This trait is used for implementing variadic generics.
///
/// The main goal is to convert a tuple (can be implemented for other types too)
/// of reactives of arbitrary size
/// `(&Reactive<usize>, &Reactive<String>, &Reactive<f64>, ...)`
///
/// to a tuple of their inner values
/// `(usize, String, f64, ...)`
///
/// Default implementations for tuples is already provided (see `impl_merge_for_tuple` macro)
/// ```
/// use reactivate::{Reactive, Merge};
///
/// let r1: Reactive<usize> = Reactive::default();
/// let r2: Reactive<String> = Reactive::default();
/// let r3: Reactive<f64> = Reactive::default();
///
/// let r: Reactive<(usize, String, f64)> = (&r1, &r2, &r3).merge();
///
/// ```
pub trait Merge {
type Output;
fn merge(self) -> Reactive<Self::Output>;
}
/// The purpose of this struct is to reduce boilerplate code when working with `Reactive`
#[derive(Default)]
struct ReactiveInner<T> {
value: T,
observers: Vec<Box<dyn FnMut(&T) + Send>>,
}
impl<T> ReactiveInner<T> {
const fn new(value: T) -> Self {
Self {
value,
observers: vec![],
}
}
fn update_unchecked(&mut self, f: impl Fn(&T) -> T) {
self.value = f(&self.value);
for obs in &mut self.observers {
obs(&self.value);
}
}
fn update_inplace_unchecked(&mut self, f: impl Fn(&mut T)) {
f(&mut self.value);
for obs in &mut self.observers {
obs(&self.value);
}
}
}
impl<T: PartialEq> ReactiveInner<T> {
fn update(&mut self, f: impl Fn(&T) -> T) {
let new_value = f(&self.value);
if new_value != self.value {
self.value = new_value;
for obs in &mut self.observers {
obs(&self.value);
}
}
}
}
impl<T: Hash> ReactiveInner<T> {
fn update_inplace(&mut self, f: impl Fn(&mut T)) {
let old_hash = {
let mut hasher = DefaultHasher::new();
self.value.hash(&mut hasher);
hasher.finish()
};
f(&mut self.value);
let new_hash = {
let mut hasher = DefaultHasher::new();
self.value.hash(&mut hasher);
hasher.finish()
};
if old_hash != new_hash {
for obs in &mut self.observers {
obs(&self.value);
}
}
}
}