Struct rbatis_core::runtime::sync::Condvar[][src]

pub struct Condvar { /* fields omitted */ }
Expand description

A Condition Variable

This type is an async version of std::sync::Condvar.

Examples

use std::sync::Arc;

use async_std::sync::{Mutex, Condvar};
use async_std::task;

let pair = Arc::new((Mutex::new(false), Condvar::new()));
let pair2 = pair.clone();

// Inside of our lock, spawn a new thread, and then wait for it to start.
task::spawn(async move {
    let (lock, cvar) = &*pair2;
    let mut started = lock.lock().await;
    *started = true;
    // We notify the condvar that the value has changed.
    cvar.notify_one();
});

// Wait for the thread to start up.
let (lock, cvar) = &*pair;
let mut started = lock.lock().await;
while !*started {
    started = cvar.wait(started).await;
}

Implementations

Creates a new condition variable

Examples

use async_std::sync::Condvar;

let cvar = Condvar::new();

Blocks the current task until this condition variable receives a notification.

Unlike the std equivalent, this does not check that a single mutex is used at runtime. However, as a best practice avoid using with multiple mutexes.

Examples

use std::sync::Arc;

use async_std::sync::{Mutex, Condvar};
use async_std::task;

let pair = Arc::new((Mutex::new(false), Condvar::new()));
let pair2 = pair.clone();

task::spawn(async move {
    let (lock, cvar) = &*pair2;
    let mut started = lock.lock().await;
    *started = true;
    // We notify the condvar that the value has changed.
    cvar.notify_one();
});

// Wait for the thread to start up.
let (lock, cvar) = &*pair;
let mut started = lock.lock().await;
while !*started {
    started = cvar.wait(started).await;
}

Blocks the current taks until this condition variable receives a notification and the required condition is met. Spurious wakeups are ignored and this function will only return once the condition has been met.

Examples

use std::sync::Arc;

use async_std::sync::{Mutex, Condvar};
use async_std::task;

let pair = Arc::new((Mutex::new(false), Condvar::new()));
let pair2 = pair.clone();

task::spawn(async move {
    let (lock, cvar) = &*pair2;
    let mut started = lock.lock().await;
    *started = true;
    // We notify the condvar that the value has changed.
    cvar.notify_one();
});

// Wait for the thread to start up.
let (lock, cvar) = &*pair;
// As long as the value inside the `Mutex<bool>` is `false`, we wait.
let _guard = cvar.wait_until(lock.lock().await, |started| { *started }).await;

Waits on this condition variable for a notification, timing out after a specified duration.

For these reasons Condvar::wait_timeout_until is recommended in most cases.

Examples

use std::sync::Arc;
use std::time::Duration;

use async_std::sync::{Mutex, Condvar};
use async_std::task;

let pair = Arc::new((Mutex::new(false), Condvar::new()));
let pair2 = pair.clone();

task::spawn(async move {
  let (lock, cvar) = &*pair2;
  let mut started = lock.lock().await;
  *started = true;
  // We notify the condvar that the value has changed.
  cvar.notify_one();
});

// wait for the thread to start up
let (lock, cvar) = &*pair;
let mut started = lock.lock().await;
loop {
  let result = cvar.wait_timeout(started, Duration::from_millis(10)).await;
  started = result.0;
  if *started == true {
      // We received the notification and the value has been updated, we can leave.
      break
  }
}

Waits on this condition variable for a notification, timing out after a specified duration. Spurious wakes will not cause this function to return.

Examples

use std::sync::Arc;
use std::time::Duration;

use async_std::sync::{Mutex, Condvar};
use async_std::task;

let pair = Arc::new((Mutex::new(false), Condvar::new()));
let pair2 = pair.clone();

task::spawn(async move {
    let (lock, cvar) = &*pair2;
    let mut started = lock.lock().await;
    *started = true;
    // We notify the condvar that the value has changed.
    cvar.notify_one();
});

// wait for the thread to start up
let (lock, cvar) = &*pair;
let result = cvar.wait_timeout_until(
    lock.lock().await,
    Duration::from_millis(100),
    |&mut started| started,
).await;
if result.1.timed_out() {
    // timed-out without the condition ever evaluating to true.
}
// access the locked mutex via result.0

Wakes up one blocked task on this condvar.

Examples

use std::sync::Arc;

use async_std::sync::{Mutex, Condvar};
use async_std::task;

let pair = Arc::new((Mutex::new(false), Condvar::new()));
let pair2 = pair.clone();

task::spawn(async move {
    let (lock, cvar) = &*pair2;
    let mut started = lock.lock().await;
    *started = true;
    // We notify the condvar that the value has changed.
    cvar.notify_one();
});

// Wait for the thread to start up.
let (lock, cvar) = &*pair;
let mut started = lock.lock().await;
while !*started {
    started = cvar.wait(started).await;
}

Wakes up all blocked tasks on this condvar.

Examples

use std::sync::Arc;

use async_std::sync::{Mutex, Condvar};
use async_std::task;

let pair = Arc::new((Mutex::new(false), Condvar::new()));
let pair2 = pair.clone();

task::spawn(async move {
    let (lock, cvar) = &*pair2;
    let mut started = lock.lock().await;
    *started = true;
    // We notify the condvar that the value has changed.
    cvar.notify_all();
});

// Wait for the thread to start up.
let (lock, cvar) = &*pair;
let mut started = lock.lock().await;
// As long as the value inside the `Mutex<bool>` is `false`, we wait.
while !*started {
    started = cvar.wait(started).await;
}

Trait Implementations

Formats the value using the given formatter. Read more

Returns the “default value” for a type. Read more

Auto Trait Implementations

Blanket Implementations

Gets the TypeId of self. Read more

Immutably borrows from an owned value. Read more

Mutably borrows from an owned value. Read more

Converts self into T using Into<T>. Read more

Converts self into a target type. Read more

Causes self to use its Binary implementation when Debug-formatted.

Causes self to use its Display implementation when Debug-formatted. Read more

Causes self to use its LowerExp implementation when Debug-formatted. Read more

Causes self to use its LowerHex implementation when Debug-formatted. Read more

Causes self to use its Octal implementation when Debug-formatted.

Causes self to use its Pointer implementation when Debug-formatted. Read more

Causes self to use its UpperExp implementation when Debug-formatted. Read more

Causes self to use its UpperHex implementation when Debug-formatted. Read more

Performs the conversion.

Performs the conversion.

Pipes by value. This is generally the method you want to use. Read more

Borrows self and passes that borrow into the pipe function. Read more

Mutably borrows self and passes that borrow into the pipe function. Read more

Borrows self, then passes self.borrow() into the pipe function. Read more

Mutably borrows self, then passes self.borrow_mut() into the pipe function. Read more

Borrows self, then passes self.as_ref() into the pipe function.

Mutably borrows self, then passes self.as_mut() into the pipe function. Read more

Borrows self, then passes self.deref() into the pipe function.

Mutably borrows self, then passes self.deref_mut() into the pipe function. Read more

Pipes a value into a function that cannot ordinarily be called in suffix position. Read more

Pipes a trait borrow into a function that cannot normally be called in suffix position. Read more

Pipes a trait mutable borrow into a function that cannot normally be called in suffix position. Read more

Pipes a trait borrow into a function that cannot normally be called in suffix position. Read more

Pipes a trait mutable borrow into a function that cannot normally be called in suffix position. Read more

Pipes a dereference into a function that cannot normally be called in suffix position. Read more

Pipes a mutable dereference into a function that cannot normally be called in suffix position. Read more

Pipes a reference into a function that cannot ordinarily be called in suffix position. Read more

Pipes a mutable reference into a function that cannot ordinarily be called in suffix position. Read more

Should always be Self

Immutable access to a value. Read more

Mutable access to a value. Read more

Immutable access to the Borrow<B> of a value. Read more

Mutable access to the BorrowMut<B> of a value. Read more

Immutable access to the AsRef<R> view of a value. Read more

Mutable access to the AsMut<R> view of a value. Read more

Immutable access to the Deref::Target of a value. Read more

Mutable access to the Deref::Target of a value. Read more

Calls .tap() only in debug builds, and is erased in release builds.

Calls .tap_mut() only in debug builds, and is erased in release builds. Read more

Calls .tap_borrow() only in debug builds, and is erased in release builds. Read more

Calls .tap_borrow_mut() only in debug builds, and is erased in release builds. Read more

Calls .tap_ref() only in debug builds, and is erased in release builds. Read more

Calls .tap_ref_mut() only in debug builds, and is erased in release builds. Read more

Calls .tap_deref() only in debug builds, and is erased in release builds. Read more

Calls .tap_deref_mut() only in debug builds, and is erased in release builds. Read more

Provides immutable access for inspection. Read more

Calls tap in debug builds, and does nothing in release builds.

Provides mutable access for modification. Read more

Calls tap_mut in debug builds, and does nothing in release builds.

Provides immutable access to the reference for inspection.

Calls tap_ref in debug builds, and does nothing in release builds.

Provides mutable access to the reference for modification.

Calls tap_ref_mut in debug builds, and does nothing in release builds.

Provides immutable access to the borrow for inspection. Read more

Calls tap_borrow in debug builds, and does nothing in release builds.

Provides mutable access to the borrow for modification.

Calls tap_borrow_mut in debug builds, and does nothing in release builds. Read more

Immutably dereferences self for inspection.

Calls tap_deref in debug builds, and does nothing in release builds.

Mutably dereferences self for modification.

Calls tap_deref_mut in debug builds, and does nothing in release builds. Read more

Attempts to convert self into T using TryInto<T>. Read more

Attempts to convert self into a target type. Read more

The type returned in the event of a conversion error.

Performs the conversion.

The type returned in the event of a conversion error.

Performs the conversion.