pub struct Scalar { /* private fields */ }Expand description
Re-export curve25519_dalek.
The Scalar struct holds an element of \(\mathbb Z / \ell\mathbb Z \).
Implementations§
Source§impl Scalar
impl Scalar
Sourcepub fn from_bytes_mod_order(bytes: [u8; 32]) -> Scalar
pub fn from_bytes_mod_order(bytes: [u8; 32]) -> Scalar
Construct a Scalar by reducing a 256-bit little-endian integer
modulo the group order \( \ell \).
Sourcepub fn from_bytes_mod_order_wide(input: &[u8; 64]) -> Scalar
pub fn from_bytes_mod_order_wide(input: &[u8; 64]) -> Scalar
Construct a Scalar by reducing a 512-bit little-endian integer
modulo the group order \( \ell \).
Sourcepub fn from_canonical_bytes(bytes: [u8; 32]) -> CtOption<Scalar>
pub fn from_canonical_bytes(bytes: [u8; 32]) -> CtOption<Scalar>
Attempt to construct a Scalar from a canonical byte representation.
§Return
Some(s), wheresis theScalarcorresponding tobytes, ifbytesis a canonical byte representation modulo the group order \( \ell \);Noneifbytesis not a canonical byte representation.
Source§impl Scalar
impl Scalar
Sourcepub const fn to_bytes(&self) -> [u8; 32]
pub const fn to_bytes(&self) -> [u8; 32]
Convert this Scalar to its underlying sequence of bytes.
§Example
use curve25519_dalek::scalar::Scalar;
let s: Scalar = Scalar::ZERO;
assert!(s.to_bytes() == [0u8; 32]);Sourcepub const fn as_bytes(&self) -> &[u8; 32]
pub const fn as_bytes(&self) -> &[u8; 32]
View the little-endian byte encoding of the integer representing this Scalar.
§Example
use curve25519_dalek::scalar::Scalar;
let s: Scalar = Scalar::ZERO;
assert!(s.as_bytes() == &[0u8; 32]);Sourcepub fn invert(&self) -> Scalar
pub fn invert(&self) -> Scalar
Given a nonzero Scalar, compute its multiplicative inverse.
§Warning
self MUST be nonzero. If you cannot
prove that this is the case, you SHOULD NOT USE THIS
FUNCTION.
§Returns
The multiplicative inverse of the this Scalar.
§Example
use curve25519_dalek::scalar::Scalar;
// x = 2238329342913194256032495932344128051776374960164957527413114840482143558222
let X: Scalar = Scalar::from_bytes_mod_order([
0x4e, 0x5a, 0xb4, 0x34, 0x5d, 0x47, 0x08, 0x84,
0x59, 0x13, 0xb4, 0x64, 0x1b, 0xc2, 0x7d, 0x52,
0x52, 0xa5, 0x85, 0x10, 0x1b, 0xcc, 0x42, 0x44,
0xd4, 0x49, 0xf4, 0xa8, 0x79, 0xd9, 0xf2, 0x04,
]);
// 1/x = 6859937278830797291664592131120606308688036382723378951768035303146619657244
let XINV: Scalar = Scalar::from_bytes_mod_order([
0x1c, 0xdc, 0x17, 0xfc, 0xe0, 0xe9, 0xa5, 0xbb,
0xd9, 0x24, 0x7e, 0x56, 0xbb, 0x01, 0x63, 0x47,
0xbb, 0xba, 0x31, 0xed, 0xd5, 0xa9, 0xbb, 0x96,
0xd5, 0x0b, 0xcd, 0x7a, 0x3f, 0x96, 0x2a, 0x0f,
]);
let inv_X: Scalar = X.invert();
assert!(XINV == inv_X);
let should_be_one: Scalar = &inv_X * &X;
assert!(should_be_one == Scalar::ONE);Sourcepub fn batch_invert(inputs: &mut [Scalar]) -> Scalar
pub fn batch_invert(inputs: &mut [Scalar]) -> Scalar
Given a slice of nonzero (possibly secret) Scalars,
compute their inverses in a batch.
§Return
Each element of inputs is replaced by its inverse.
The product of all inverses is returned.
§Warning
All input Scalars MUST be nonzero. If you cannot
prove that this is the case, you SHOULD NOT USE THIS
FUNCTION.
§Example
let mut scalars = [
Scalar::from(3u64),
Scalar::from(5u64),
Scalar::from(7u64),
Scalar::from(11u64),
];
let allinv = Scalar::batch_invert(&mut scalars);
assert_eq!(allinv, Scalar::from(3*5*7*11u64).invert());
assert_eq!(scalars[0], Scalar::from(3u64).invert());
assert_eq!(scalars[1], Scalar::from(5u64).invert());
assert_eq!(scalars[2], Scalar::from(7u64).invert());
assert_eq!(scalars[3], Scalar::from(11u64).invert());Trait Implementations§
Source§impl<'b> AddAssign<&'b Scalar> for Scalar
impl<'b> AddAssign<&'b Scalar> for Scalar
Source§fn add_assign(&mut self, _rhs: &'b Scalar)
fn add_assign(&mut self, _rhs: &'b Scalar)
+= operation. Read moreSource§impl AddAssign for Scalar
impl AddAssign for Scalar
Source§fn add_assign(&mut self, rhs: Scalar)
fn add_assign(&mut self, rhs: Scalar)
+= operation. Read moreSource§impl ConditionallySelectable for Scalar
impl ConditionallySelectable for Scalar
Source§fn conditional_assign(&mut self, other: &Self, choice: Choice)
fn conditional_assign(&mut self, other: &Self, choice: Choice)
Source§fn conditional_swap(a: &mut Self, b: &mut Self, choice: Choice)
fn conditional_swap(a: &mut Self, b: &mut Self, choice: Choice)
self and other if choice == 1; otherwise,
reassign both unto themselves. Read moreSource§impl ConstantTimeEq for Scalar
impl ConstantTimeEq for Scalar
Source§impl From<Scalar> for XEdDSAPrivateKey
impl From<Scalar> for XEdDSAPrivateKey
Source§impl From<u64> for Scalar
impl From<u64> for Scalar
Source§fn from(x: u64) -> Scalar
fn from(x: u64) -> Scalar
Construct a scalar from the given u64.
§Inputs
An u64 to convert to a Scalar.
§Returns
A Scalar corresponding to the input u64.
§Example
use curve25519_dalek::scalar::Scalar;
let fourtytwo = Scalar::from(42u64);
let six = Scalar::from(6u64);
let seven = Scalar::from(7u64);
assert!(fourtytwo == six * seven);Source§impl<'a, 'b> Mul<&'a EdwardsBasepointTable> for &'b Scalar
impl<'a, 'b> Mul<&'a EdwardsBasepointTable> for &'b Scalar
Source§fn mul(self, basepoint_table: &'a EdwardsBasepointTable) -> EdwardsPoint
fn mul(self, basepoint_table: &'a EdwardsBasepointTable) -> EdwardsPoint
Construct an EdwardsPoint from a Scalar \(a\) by
computing the multiple \(aB\) of this basepoint \(B\).
Source§type Output = EdwardsPoint
type Output = EdwardsPoint
* operator.Source§impl<'a, 'b> Mul<&'a EdwardsBasepointTableRadix128> for &'b Scalar
impl<'a, 'b> Mul<&'a EdwardsBasepointTableRadix128> for &'b Scalar
Source§fn mul(self, basepoint_table: &'a EdwardsBasepointTableRadix128) -> EdwardsPoint
fn mul(self, basepoint_table: &'a EdwardsBasepointTableRadix128) -> EdwardsPoint
Construct an EdwardsPoint from a Scalar \(a\) by
computing the multiple \(aB\) of this basepoint \(B\).
Source§type Output = EdwardsPoint
type Output = EdwardsPoint
* operator.Source§impl<'a, 'b> Mul<&'a EdwardsBasepointTableRadix256> for &'b Scalar
impl<'a, 'b> Mul<&'a EdwardsBasepointTableRadix256> for &'b Scalar
Source§fn mul(self, basepoint_table: &'a EdwardsBasepointTableRadix256) -> EdwardsPoint
fn mul(self, basepoint_table: &'a EdwardsBasepointTableRadix256) -> EdwardsPoint
Construct an EdwardsPoint from a Scalar \(a\) by
computing the multiple \(aB\) of this basepoint \(B\).
Source§type Output = EdwardsPoint
type Output = EdwardsPoint
* operator.Source§impl<'a, 'b> Mul<&'a EdwardsBasepointTableRadix32> for &'b Scalar
impl<'a, 'b> Mul<&'a EdwardsBasepointTableRadix32> for &'b Scalar
Source§fn mul(self, basepoint_table: &'a EdwardsBasepointTableRadix32) -> EdwardsPoint
fn mul(self, basepoint_table: &'a EdwardsBasepointTableRadix32) -> EdwardsPoint
Construct an EdwardsPoint from a Scalar \(a\) by
computing the multiple \(aB\) of this basepoint \(B\).
Source§type Output = EdwardsPoint
type Output = EdwardsPoint
* operator.Source§impl<'a, 'b> Mul<&'a EdwardsBasepointTableRadix64> for &'b Scalar
impl<'a, 'b> Mul<&'a EdwardsBasepointTableRadix64> for &'b Scalar
Source§fn mul(self, basepoint_table: &'a EdwardsBasepointTableRadix64) -> EdwardsPoint
fn mul(self, basepoint_table: &'a EdwardsBasepointTableRadix64) -> EdwardsPoint
Construct an EdwardsPoint from a Scalar \(a\) by
computing the multiple \(aB\) of this basepoint \(B\).
Source§type Output = EdwardsPoint
type Output = EdwardsPoint
* operator.Source§impl<'a, 'b> Mul<&'b EdwardsPoint> for &'a Scalar
impl<'a, 'b> Mul<&'b EdwardsPoint> for &'a Scalar
Source§fn mul(self, point: &'b EdwardsPoint) -> EdwardsPoint
fn mul(self, point: &'b EdwardsPoint) -> EdwardsPoint
Scalar multiplication: compute scalar * self.
For scalar multiplication of a basepoint,
EdwardsBasepointTable is approximately 4x faster.
Source§type Output = EdwardsPoint
type Output = EdwardsPoint
* operator.Source§impl<'b> Mul<&'b EdwardsPoint> for Scalar
impl<'b> Mul<&'b EdwardsPoint> for Scalar
Source§type Output = EdwardsPoint
type Output = EdwardsPoint
* operator.Source§fn mul(self, rhs: &'b EdwardsPoint) -> EdwardsPoint
fn mul(self, rhs: &'b EdwardsPoint) -> EdwardsPoint
* operation. Read moreSource§impl Mul<&MontgomeryPoint> for &Scalar
impl Mul<&MontgomeryPoint> for &Scalar
Source§type Output = MontgomeryPoint
type Output = MontgomeryPoint
* operator.Source§fn mul(self, point: &MontgomeryPoint) -> MontgomeryPoint
fn mul(self, point: &MontgomeryPoint) -> MontgomeryPoint
* operation. Read moreSource§impl<'b> Mul<&'b MontgomeryPoint> for Scalar
impl<'b> Mul<&'b MontgomeryPoint> for Scalar
Source§type Output = MontgomeryPoint
type Output = MontgomeryPoint
* operator.Source§fn mul(self, rhs: &'b MontgomeryPoint) -> MontgomeryPoint
fn mul(self, rhs: &'b MontgomeryPoint) -> MontgomeryPoint
* operation. Read moreSource§impl<'a, 'b> Mul<&'a RistrettoBasepointTable> for &'b Scalar
impl<'a, 'b> Mul<&'a RistrettoBasepointTable> for &'b Scalar
Source§type Output = RistrettoPoint
type Output = RistrettoPoint
* operator.Source§fn mul(self, basepoint_table: &'a RistrettoBasepointTable) -> RistrettoPoint
fn mul(self, basepoint_table: &'a RistrettoBasepointTable) -> RistrettoPoint
* operation. Read moreSource§impl<'a, 'b> Mul<&'b RistrettoPoint> for &'a Scalar
impl<'a, 'b> Mul<&'b RistrettoPoint> for &'a Scalar
Source§fn mul(self, point: &'b RistrettoPoint) -> RistrettoPoint
fn mul(self, point: &'b RistrettoPoint) -> RistrettoPoint
Scalar multiplication: compute self * scalar.
Source§type Output = RistrettoPoint
type Output = RistrettoPoint
* operator.Source§impl<'b> Mul<&'b RistrettoPoint> for Scalar
impl<'b> Mul<&'b RistrettoPoint> for Scalar
Source§type Output = RistrettoPoint
type Output = RistrettoPoint
* operator.Source§fn mul(self, rhs: &'b RistrettoPoint) -> RistrettoPoint
fn mul(self, rhs: &'b RistrettoPoint) -> RistrettoPoint
* operation. Read moreSource§impl<'a> Mul<EdwardsPoint> for &'a Scalar
impl<'a> Mul<EdwardsPoint> for &'a Scalar
Source§type Output = EdwardsPoint
type Output = EdwardsPoint
* operator.Source§fn mul(self, rhs: EdwardsPoint) -> EdwardsPoint
fn mul(self, rhs: EdwardsPoint) -> EdwardsPoint
* operation. Read moreSource§impl Mul<EdwardsPoint> for Scalar
impl Mul<EdwardsPoint> for Scalar
Source§type Output = EdwardsPoint
type Output = EdwardsPoint
* operator.Source§fn mul(self, rhs: EdwardsPoint) -> EdwardsPoint
fn mul(self, rhs: EdwardsPoint) -> EdwardsPoint
* operation. Read moreSource§impl<'a> Mul<MontgomeryPoint> for &'a Scalar
impl<'a> Mul<MontgomeryPoint> for &'a Scalar
Source§type Output = MontgomeryPoint
type Output = MontgomeryPoint
* operator.Source§fn mul(self, rhs: MontgomeryPoint) -> MontgomeryPoint
fn mul(self, rhs: MontgomeryPoint) -> MontgomeryPoint
* operation. Read moreSource§impl Mul<MontgomeryPoint> for Scalar
impl Mul<MontgomeryPoint> for Scalar
Source§type Output = MontgomeryPoint
type Output = MontgomeryPoint
* operator.Source§fn mul(self, rhs: MontgomeryPoint) -> MontgomeryPoint
fn mul(self, rhs: MontgomeryPoint) -> MontgomeryPoint
* operation. Read moreSource§impl<'a> Mul<RistrettoPoint> for &'a Scalar
impl<'a> Mul<RistrettoPoint> for &'a Scalar
Source§type Output = RistrettoPoint
type Output = RistrettoPoint
* operator.Source§fn mul(self, rhs: RistrettoPoint) -> RistrettoPoint
fn mul(self, rhs: RistrettoPoint) -> RistrettoPoint
* operation. Read moreSource§impl Mul<RistrettoPoint> for Scalar
impl Mul<RistrettoPoint> for Scalar
Source§type Output = RistrettoPoint
type Output = RistrettoPoint
* operator.Source§fn mul(self, rhs: RistrettoPoint) -> RistrettoPoint
fn mul(self, rhs: RistrettoPoint) -> RistrettoPoint
* operation. Read moreSource§impl<'b> MulAssign<&'b Scalar> for Scalar
impl<'b> MulAssign<&'b Scalar> for Scalar
Source§fn mul_assign(&mut self, _rhs: &'b Scalar)
fn mul_assign(&mut self, _rhs: &'b Scalar)
*= operation. Read moreSource§impl MulAssign for Scalar
impl MulAssign for Scalar
Source§fn mul_assign(&mut self, rhs: Scalar)
fn mul_assign(&mut self, rhs: Scalar)
*= operation. Read moreSource§impl<'b> SubAssign<&'b Scalar> for Scalar
impl<'b> SubAssign<&'b Scalar> for Scalar
Source§fn sub_assign(&mut self, _rhs: &'b Scalar)
fn sub_assign(&mut self, _rhs: &'b Scalar)
-= operation. Read moreSource§impl SubAssign for Scalar
impl SubAssign for Scalar
Source§fn sub_assign(&mut self, rhs: Scalar)
fn sub_assign(&mut self, rhs: Scalar)
-= operation. Read moreimpl Copy for Scalar
impl Eq for Scalar
Auto Trait Implementations§
impl Freeze for Scalar
impl RefUnwindSafe for Scalar
impl Send for Scalar
impl Sync for Scalar
impl Unpin for Scalar
impl UnwindSafe for Scalar
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> ConditionallyNegatable for T
impl<T> ConditionallyNegatable for T
Source§fn conditional_negate(&mut self, choice: Choice)
fn conditional_negate(&mut self, choice: Choice)
Source§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
Source§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
Source§fn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
key and return true if they are equal.Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoRequest<T> for T
impl<T> IntoRequest<T> for T
Source§fn into_request(self) -> Request<T>
fn into_request(self) -> Request<T>
T in a tonic::Request