SortedDisjoint

Trait SortedDisjoint 

Source
pub trait SortedDisjoint<T: Integer>: SortedStarts<T> {
Show 13 methods // Provided methods fn union<R>(self, other: R) -> UnionMerge<T, Self, R::IntoIter> where R: IntoIterator<Item = Self::Item>, R::IntoIter: SortedDisjoint<T>, Self: Sized { ... } fn intersection<R>( self, other: R, ) -> IntersectionMerge<T, Self, R::IntoIter> where R: IntoIterator<Item = Self::Item>, R::IntoIter: SortedDisjoint<T>, Self: Sized { ... } fn difference<R>(self, other: R) -> DifferenceMerge<T, Self, R::IntoIter> where R: IntoIterator<Item = Self::Item>, R::IntoIter: SortedDisjoint<T>, Self: Sized { ... } fn complement(self) -> NotIter<T, Self> where Self: Sized { ... } fn symmetric_difference<R>( self, other: R, ) -> SymDiffMerge<T, Self, R::IntoIter> where R: IntoIterator<Item = Self::Item>, R::IntoIter: SortedDisjoint<T>, <R as IntoIterator>::IntoIter:, Self: Sized { ... } fn equal<R>(self, other: R) -> bool where R: IntoIterator<Item = Self::Item>, R::IntoIter: SortedDisjoint<T>, Self: Sized { ... } fn to_string(self) -> String where Self: Sized { ... } fn is_empty(self) -> bool where Self: Sized { ... } fn is_universal(self) -> bool where Self: Sized { ... } fn is_subset<R>(self, other: R) -> bool where R: IntoIterator<Item = Self::Item>, R::IntoIter: SortedDisjoint<T>, Self: Sized { ... } fn is_superset<R>(self, other: R) -> bool where R: IntoIterator<Item = Self::Item>, R::IntoIter: SortedDisjoint<T>, Self: Sized { ... } fn is_disjoint<R>(self, other: R) -> bool where R: IntoIterator<Item = Self::Item>, R::IntoIter: SortedDisjoint<T>, Self: Sized { ... } fn into_range_set_blaze(self) -> RangeSetBlaze<T> where Self: Sized { ... }
}
Expand description

Marks iterators that provide ranges that are sorted by start and disjoint. Set operations on iterators that implement this trait can be performed in linear time.

§Table of Contents

§SortedDisjoint Constructors

You’ll usually construct a SortedDisjoint iterator from a RangeSetBlaze or a CheckSortedDisjoint. Here is a summary table, followed by examples. You can also define your own SortedDisjoint.

§Constructor Examples

use range_set_blaze::prelude::*;

// RangeSetBlaze's .ranges() and .into_ranges()
let r = RangeSetBlaze::from_iter([3, 2, 1, 100, 1]);
let a = r.ranges();
assert!(a.into_string() == "1..=3, 100..=100");
// 'into_ranges' takes ownership of the 'RangeSetBlaze'
let a = RangeSetBlaze::from_iter([3, 2, 1, 100, 1]).into_ranges();
assert!(a.into_string() == "1..=3, 100..=100");

// CheckSortedDisjoint -- unsorted or overlapping input ranges will cause a panic.
let a = CheckSortedDisjoint::new([1..=3, 100..=100]);
assert!(a.into_string() == "1..=3, 100..=100");

§SortedDisjoint Set Operations

You can perform set operations on SortedDisjoints using operators.

Set OperatorsOperatorMultiway (same type)Multiway (different types)
uniona | b[a, b, c].union() union_dyn!(a, b, c)
intersectiona & b[a, b, c].intersection() intersection_dyn!(a, b, c)
differencea - bn/an/a
symmetric_differencea ^ b[a, b, c].symmetric_difference() symmetric_difference_dyn!(a, b, c)
complement!an/an/a

§Performance

Every operation is implemented as a single pass over the sorted & disjoint ranges, with minimal memory.

This is true even when applying multiple operations. The last example below demonstrates this.

§Examples

use range_set_blaze::prelude::*;

let a0 = RangeSetBlaze::from_iter([1..=2, 5..=100]);
let b0 = RangeSetBlaze::from_iter([2..=6]);

// 'union' method and 'to_string' method
let (a, b) = (a0.ranges(), b0.ranges());
let result = a.union(b);
assert_eq!(result.into_string(), "1..=100");

// '|' operator and 'equal' method
let (a, b) = (a0.ranges(), b0.ranges());
let result = a | b;
assert!(result.equal(CheckSortedDisjoint::new([1..=100])));

// multiway union of same type
let c0 = RangeSetBlaze::from_iter([2..=2, 6..=200]);
let (a, b, c) = (a0.ranges(), b0.ranges(), c0.ranges());
let result = [a, b, c].union();
assert_eq!(result.into_string(), "1..=200");

// multiway union of different types
let (a, b, c) = (a0.ranges(), b0.ranges(), c0.ranges());
let result = union_dyn!(a, b, !c);
assert_eq!(result.into_string(), "-2147483648..=100, 201..=2147483647");

// Applying multiple operators makes only one pass through the inputs with minimal memory.
let (a, b, c) = (a0.ranges(), b0.ranges(), c0.ranges());
let result = a - (b | c);
assert!(result.into_string() == "1..=1");

§How to mark your type as SortedDisjoint

To mark your iterator type as SortedDisjoint, you implement the SortedStarts and SortedDisjoint traits. This is your promise to the compiler that your iterator will provide inclusive ranges that are disjoint and sorted by start.

When you do this, your iterator will get access to the efficient set operations methods, such as intersection and complement. The example below shows this.

To use operators such as & and !, you must also implement the BitAnd, Not, etc. traits.

If you want others to use your marked iterator type, reexport: pub use range_set_blaze::{SortedDisjoint, SortedStarts};

§Example – Find the ordinal weekdays in September 2023

use core::ops::RangeInclusive;
use core::iter::FusedIterator;
pub use range_set_blaze::{SortedDisjoint, SortedStarts};

// Ordinal dates count January 1 as day 1, February 1 as day 32, etc.
struct OrdinalWeekends2023 {
    next_range: RangeInclusive<i32>,
}

// We promise the compiler that our iterator will provide
// ranges that are sorted and disjoint.
impl FusedIterator for OrdinalWeekends2023 {}
impl SortedStarts<i32> for OrdinalWeekends2023 {}
impl SortedDisjoint<i32> for OrdinalWeekends2023 {}

impl OrdinalWeekends2023 {
    fn new() -> Self {
        Self { next_range: 0..=1 }
    }
}
impl Iterator for OrdinalWeekends2023 {
    type Item = RangeInclusive<i32>;
    fn next(&mut self) -> Option<Self::Item> {
        let (start, end) = self.next_range.clone().into_inner();
        if start > 365 {
            None
        } else {
            self.next_range = (start + 7)..=(end + 7);
            Some(start.max(1)..=end.min(365))
        }
    }
}

use range_set_blaze::prelude::*;

let weekends = OrdinalWeekends2023::new();
let september = CheckSortedDisjoint::new([244..=273]);
let september_weekdays = september.intersection(weekends.complement());
assert_eq!(
    september_weekdays.into_string(),
    "244..=244, 247..=251, 254..=258, 261..=265, 268..=272"
);

Provided Methods§

Source

fn union<R>(self, other: R) -> UnionMerge<T, Self, R::IntoIter>
where R: IntoIterator<Item = Self::Item>, R::IntoIter: SortedDisjoint<T>, Self: Sized,

Given two SortedDisjoint iterators, efficiently returns a SortedDisjoint iterator of their union.

§Examples
use range_set_blaze::prelude::*;

let a = CheckSortedDisjoint::new([1..=1]);
let b = RangeSetBlaze::from_iter([2..=2]).into_ranges();
let union = a.union(b);
assert_eq!(union.into_string(), "1..=2");

// Alternatively, we can use "|" because CheckSortedDisjoint defines
// ops::bitor as SortedDisjoint::union.
let a = CheckSortedDisjoint::new([1..=1]);
let b = RangeSetBlaze::from_iter([2..=2]).into_ranges();
let union = a | b;
assert_eq!(union.into_string(), "1..=2");
Source

fn intersection<R>(self, other: R) -> IntersectionMerge<T, Self, R::IntoIter>
where R: IntoIterator<Item = Self::Item>, R::IntoIter: SortedDisjoint<T>, Self: Sized,

Given two SortedDisjoint iterators, efficiently returns a SortedDisjoint iterator of their intersection.

§Examples
use range_set_blaze::prelude::*;

let a = CheckSortedDisjoint::new([1..=2]);
let b = RangeSetBlaze::from_iter([2..=3]).into_ranges();
let intersection = a.intersection(b);
assert_eq!(intersection.into_string(), "2..=2");

// Alternatively, we can use "&" because CheckSortedDisjoint defines
// ops::bitand as SortedDisjoint::intersection.
let a = CheckSortedDisjoint::new([1..=2]);
let b = RangeSetBlaze::from_iter([2..=3]).into_ranges();
let intersection = a & b;
assert_eq!(intersection.into_string(), "2..=2");
Source

fn difference<R>(self, other: R) -> DifferenceMerge<T, Self, R::IntoIter>
where R: IntoIterator<Item = Self::Item>, R::IntoIter: SortedDisjoint<T>, Self: Sized,

Given two SortedDisjoint iterators, efficiently returns a SortedDisjoint iterator of their set difference.

§Examples
use range_set_blaze::prelude::*;

let a = CheckSortedDisjoint::new([1..=2]);
let b = RangeSetBlaze::from_iter([2..=3]).into_ranges();
let difference = a.difference(b);
assert_eq!(difference.into_string(), "1..=1");

// Alternatively, we can use "-" because CheckSortedDisjoint defines
// ops::sub as SortedDisjoint::difference.
let a = CheckSortedDisjoint::new([1..=2]);
let b = RangeSetBlaze::from_iter([2..=3]).into_ranges();
let difference = a - b;
assert_eq!(difference.into_string(), "1..=1");
Source

fn complement(self) -> NotIter<T, Self>
where Self: Sized,

Given a SortedDisjoint iterator, efficiently returns a SortedDisjoint iterator of its complement.

§Examples
use range_set_blaze::prelude::*;

let a = CheckSortedDisjoint::new([10_u8..=20, 100..=200]);
let complement = a.complement();
assert_eq!(complement.into_string(), "0..=9, 21..=99, 201..=255");

// Alternatively, we can use "!" because CheckSortedDisjoint defines
// `ops::Not` as `SortedDisjoint::complement`.
let a = CheckSortedDisjoint::new([10_u8..=20, 100..=200]);
let complement = !a;
assert_eq!(complement.into_string(), "0..=9, 21..=99, 201..=255");
Source

fn symmetric_difference<R>(self, other: R) -> SymDiffMerge<T, Self, R::IntoIter>
where R: IntoIterator<Item = Self::Item>, R::IntoIter: SortedDisjoint<T>, <R as IntoIterator>::IntoIter:, Self: Sized,

Given two SortedDisjoint iterators, efficiently returns a SortedDisjoint iterator of their symmetric difference.

§Examples
use range_set_blaze::prelude::*;

let a = CheckSortedDisjoint::new([1..=2]);
let b = RangeSetBlaze::from_iter([2..=3]).into_ranges();
let symmetric_difference = a.symmetric_difference(b);
assert_eq!(symmetric_difference.into_string(), "1..=1, 3..=3");

// Alternatively, we can use "^" because CheckSortedDisjoint defines
// ops::bitxor as SortedDisjoint::symmetric_difference.
let a = CheckSortedDisjoint::new([1..=2]);
let b = RangeSetBlaze::from_iter([2..=3]).into_ranges();
let symmetric_difference = a ^ b;
assert_eq!(symmetric_difference.into_string(), "1..=1, 3..=3");
Source

fn equal<R>(self, other: R) -> bool
where R: IntoIterator<Item = Self::Item>, R::IntoIter: SortedDisjoint<T>, Self: Sized,

Given two SortedDisjoint iterators, efficiently tells if they are equal. Unlike most equality testing in Rust, this method takes ownership of the iterators and consumes them.

§Examples
use range_set_blaze::prelude::*;

let a = CheckSortedDisjoint::new([1..=2]);
let b = RangeSetBlaze::from_iter([1..=2]).into_ranges();
assert!(a.equal(b));
Source

fn to_string(self) -> String
where Self: Sized,

👎Deprecated since 0.2.0: Use into_string instead

Deprecated. Use into_string instead.

Source

fn is_empty(self) -> bool
where Self: Sized,

Returns true if the set contains no elements.

§Examples
use range_set_blaze::prelude::*;

let a = CheckSortedDisjoint::new([1..=2]);
assert!(!a.is_empty());
Source

fn is_universal(self) -> bool
where Self: Sized,

Returns true if the set contains all possible integers.

For type T, this means exactly one range spanning T::min_value()..=T::max_value(). Complexity: O(1) on the first item.

§Examples
use range_set_blaze::prelude::*;

let a = CheckSortedDisjoint::new([1_u8..=2]);
assert!(!a.is_universal());

let universal = CheckSortedDisjoint::new([0_u8..=255]);
assert!(universal.is_universal());
Source

fn is_subset<R>(self, other: R) -> bool
where R: IntoIterator<Item = Self::Item>, R::IntoIter: SortedDisjoint<T>, Self: Sized,

Returns true if the set is a subset of another, i.e., other contains at least all the elements in self.

§Examples
use range_set_blaze::prelude::*;

let sup = CheckSortedDisjoint::new([1..=3]);
let set: CheckSortedDisjoint<i32, _> = [].into();
assert_eq!(set.is_subset(sup), true);

let sup = CheckSortedDisjoint::new([1..=3]);
let set = CheckSortedDisjoint::new([2..=2]);
assert_eq!(set.is_subset(sup), true);

let sup = CheckSortedDisjoint::new([1..=3]);
let set = CheckSortedDisjoint::new([2..=2, 4..=4]);
assert_eq!(set.is_subset(sup), false);
Source

fn is_superset<R>(self, other: R) -> bool
where R: IntoIterator<Item = Self::Item>, R::IntoIter: SortedDisjoint<T>, Self: Sized,

Returns true if the set is a superset of another, i.e., self contains at least all the elements in other.

§Examples
use range_set_blaze::RangeSetBlaze;

let sub = RangeSetBlaze::from_iter([1, 2]);
let mut set = RangeSetBlaze::new();

assert_eq!(set.is_superset(&sub), false);

set.insert(0);
set.insert(1);
assert_eq!(set.is_superset(&sub), false);

set.insert(2);
assert_eq!(set.is_superset(&sub), true);
Source

fn is_disjoint<R>(self, other: R) -> bool
where R: IntoIterator<Item = Self::Item>, R::IntoIter: SortedDisjoint<T>, Self: Sized,

Returns true if self has no elements in common with other. This is equivalent to checking for an empty intersection.

§Examples
use range_set_blaze::RangeSetBlaze;

let a = RangeSetBlaze::from_iter([1..=3]);
let mut b = RangeSetBlaze::new();

assert_eq!(a.is_disjoint(&b), true);
b.insert(4);
assert_eq!(a.is_disjoint(&b), true);
b.insert(1);
assert_eq!(a.is_disjoint(&b), false);
Source

fn into_range_set_blaze(self) -> RangeSetBlaze<T>
where Self: Sized,

Create a RangeSetBlaze from a SortedDisjoint iterator.

For more about constructors and performance, see RangeSetBlaze Constructors.

§Examples
use range_set_blaze::prelude::*;

let a0 = RangeSetBlaze::from_sorted_disjoint(CheckSortedDisjoint::new([-10..=-5, 1..=2]));
let a1: RangeSetBlaze<i32> = CheckSortedDisjoint::new([-10..=-5, 1..=2]).into_range_set_blaze();
assert!(a0 == a1 && a0.to_string() == "-10..=-5, 1..=2");

Implementors§

Source§

impl<'a, T: Integer> SortedDisjoint<T> for DynSortedDisjoint<'a, T>

Source§

impl<'a, T: Integer> SortedDisjoint<T> for RangesIter<'a, T>

Source§

impl<'a, V: Eq + Clone, T: Integer> SortedDisjoint<T> for MapRangesIter<'a, T, V>

Source§

impl<'ignore, T: Integer> SortedDisjoint<T> for IntoRangesIter<T>

Source§

impl<'ignore, T: Integer> SortedDisjoint<T> for RangeOnce<T>

Source§

impl<I: SortedDisjoint<T>, T: Integer> SortedDisjoint<T> for NotIter<T, I>

Source§

impl<I: SortedStarts<T>, T: Integer> SortedDisjoint<T> for SymDiffIter<T, I>

Source§

impl<I: SortedStarts<T>, T: Integer> SortedDisjoint<T> for UnionIter<T, I>

Source§

impl<I: AnythingGoes<T>, T: Integer> SortedDisjoint<T> for CheckSortedDisjoint<T, I>

Source§

impl<V: Eq + Clone, T: Integer> SortedDisjoint<T> for MapIntoRangesIter<T, V>

Source§

impl<VR: ValueRef, I: SortedDisjointMap<T, VR>, T: Integer> SortedDisjoint<T> for RangeValuesToRangesIter<T, VR, I>