1#![allow(dead_code)]
7
8use crate::hybrid_algorithms::{ClassicalOptimizer, Hamiltonian};
9use scirs2_core::random::prelude::*;
10use scirs2_core::random::prelude::*;
11use std::collections::HashMap;
12use std::f64::consts::PI;
13
14pub struct AdaptQAOA {
16 max_depth: usize,
18 operator_pool: OperatorPool,
20 gradient_threshold: f64,
22 optimizer: ClassicalOptimizer,
24 use_commutator_screening: bool,
26}
27
28#[derive(Debug, Clone)]
29pub struct OperatorPool {
30 single_qubit_ops: Vec<PauliOperator>,
32 two_qubit_ops: Vec<PauliOperator>,
34 custom_ops: Vec<PauliOperator>,
36}
37
38#[derive(Debug, Clone)]
39pub struct PauliOperator {
40 pauli_string: Vec<char>,
42 coefficient: f64,
44 label: String,
46}
47
48impl AdaptQAOA {
49 pub fn new(max_depth: usize, optimizer: ClassicalOptimizer) -> Self {
51 Self {
52 max_depth,
53 operator_pool: OperatorPool::default_pool(),
54 gradient_threshold: 1e-3,
55 optimizer,
56 use_commutator_screening: true,
57 }
58 }
59
60 pub const fn with_gradient_threshold(mut self, threshold: f64) -> Self {
62 self.gradient_threshold = threshold;
63 self
64 }
65
66 pub fn with_operator_pool(mut self, pool: OperatorPool) -> Self {
68 self.operator_pool = pool;
69 self
70 }
71
72 pub const fn with_commutator_screening(mut self, use_screening: bool) -> Self {
74 self.use_commutator_screening = use_screening;
75 self
76 }
77
78 pub fn adapt_circuit(&mut self, hamiltonian: &Hamiltonian) -> Result<AdaptCircuit, String> {
80 let mut circuit = AdaptCircuit::new();
81 let mut converged = false;
82
83 while circuit.depth() < self.max_depth && !converged {
84 let gradients = self.compute_operator_gradients(&circuit, hamiltonian)?;
86
87 let (best_op_idx, max_gradient) = gradients
89 .iter()
90 .enumerate()
91 .max_by(|(_, a), (_, b)| {
92 a.abs()
93 .partial_cmp(&b.abs())
94 .unwrap_or(std::cmp::Ordering::Equal)
95 })
96 .ok_or("No operators in pool")?;
97
98 if max_gradient.abs() < self.gradient_threshold {
99 #[allow(unused_assignments)]
100 {
101 converged = true;
102 }
103 break;
104 }
105
106 let operator = self.operator_pool.get_operator(best_op_idx)?;
108 circuit.add_operator(operator.clone(), 0.0); self.optimize_circuit_parameters(&mut circuit, hamiltonian)?;
112
113 if circuit.depth() < self.max_depth / 2 {
115 } else {
117 self.operator_pool.remove_operator(best_op_idx);
119 }
120 }
121
122 Ok(circuit)
123 }
124
125 fn compute_operator_gradients(
127 &self,
128 circuit: &AdaptCircuit,
129 hamiltonian: &Hamiltonian,
130 ) -> Result<Vec<f64>, String> {
131 let mut gradients = Vec::new();
132
133 for op in self.operator_pool.iter() {
134 if self.use_commutator_screening {
136 let commutator_norm = self.estimate_commutator_norm(op, hamiltonian)?;
137 if commutator_norm < 1e-10 {
138 gradients.push(0.0);
139 continue;
140 }
141 }
142
143 let gradient = self.compute_single_gradient(circuit, op, hamiltonian)?;
145 gradients.push(gradient);
146 }
147
148 Ok(gradients)
149 }
150
151 fn estimate_commutator_norm(
153 &self,
154 operator: &PauliOperator,
155 hamiltonian: &Hamiltonian,
156 ) -> Result<f64, String> {
157 let mut norm = 0.0;
159
160 for h_term in &hamiltonian.terms {
161 let commutes = self.pauli_strings_commute(&operator.pauli_string, &h_term.pauli_string);
162
163 if !commutes {
164 norm += h_term.coefficient.abs() * operator.coefficient.abs();
165 }
166 }
167
168 Ok(norm)
169 }
170
171 fn pauli_strings_commute(&self, p1: &[char], p2: &[char]) -> bool {
173 if p1.len() != p2.len() {
174 return false;
175 }
176
177 let mut anticommuting_count = 0;
178
179 for (a, b) in p1.iter().zip(p2.iter()) {
180 if *a != 'I' && *b != 'I' && *a != *b {
181 anticommuting_count += 1;
182 }
183 }
184
185 anticommuting_count % 2 == 0
186 }
187
188 fn compute_single_gradient(
190 &self,
191 _circuit: &AdaptCircuit,
192 operator: &PauliOperator,
193 _hamiltonian: &Hamiltonian,
194 ) -> Result<f64, String> {
195 let random_gradient = thread_rng().gen_range(-1.0..1.0);
198 Ok(random_gradient * operator.coefficient)
199 }
200
201 fn optimize_circuit_parameters(
203 &self,
204 circuit: &mut AdaptCircuit,
205 _hamiltonian: &Hamiltonian,
206 ) -> Result<(), String> {
207 let mut rng = thread_rng();
209
210 for param in circuit.parameters_mut() {
211 *param += rng.gen_range(-0.1..0.1);
212 }
213
214 Ok(())
215 }
216}
217
218#[derive(Debug, Clone)]
220pub struct AdaptCircuit {
221 operators: Vec<PauliOperator>,
223 parameters: Vec<f64>,
225}
226
227impl AdaptCircuit {
228 const fn new() -> Self {
229 Self {
230 operators: Vec::new(),
231 parameters: Vec::new(),
232 }
233 }
234
235 fn depth(&self) -> usize {
236 self.operators.len()
237 }
238
239 fn add_operator(&mut self, operator: PauliOperator, parameter: f64) {
240 self.operators.push(operator);
241 self.parameters.push(parameter);
242 }
243
244 fn parameters_mut(&mut self) -> &mut [f64] {
245 &mut self.parameters
246 }
247}
248
249impl OperatorPool {
250 fn default_pool() -> Self {
252 let mut single_qubit_ops = Vec::new();
253 let mut two_qubit_ops = Vec::new();
254
255 for pauli in ['X', 'Y', 'Z'] {
257 single_qubit_ops.push(PauliOperator {
258 pauli_string: vec![pauli],
259 coefficient: 1.0,
260 label: format!("R{pauli}"),
261 });
262 }
263
264 for (p1, p2) in [('X', 'X'), ('Y', 'Y'), ('Z', 'Z'), ('X', 'Y'), ('Y', 'Z')] {
266 two_qubit_ops.push(PauliOperator {
267 pauli_string: vec![p1, p2],
268 coefficient: 1.0,
269 label: format!("{p1}{p2}"),
270 });
271 }
272
273 Self {
274 single_qubit_ops,
275 two_qubit_ops,
276 custom_ops: Vec::new(),
277 }
278 }
279
280 fn get_operator(&self, idx: usize) -> Result<&PauliOperator, String> {
281 let total_ops =
282 self.single_qubit_ops.len() + self.two_qubit_ops.len() + self.custom_ops.len();
283
284 if idx >= total_ops {
285 return Err("Operator index out of range".to_string());
286 }
287
288 if idx < self.single_qubit_ops.len() {
289 Ok(&self.single_qubit_ops[idx])
290 } else if idx < self.single_qubit_ops.len() + self.two_qubit_ops.len() {
291 Ok(&self.two_qubit_ops[idx - self.single_qubit_ops.len()])
292 } else {
293 Ok(&self.custom_ops[idx - self.single_qubit_ops.len() - self.two_qubit_ops.len()])
294 }
295 }
296
297 const fn remove_operator(&self, _idx: usize) {
298 }
300
301 fn iter(&self) -> impl Iterator<Item = &PauliOperator> {
302 self.single_qubit_ops
303 .iter()
304 .chain(self.two_qubit_ops.iter())
305 .chain(self.custom_ops.iter())
306 }
307}
308
309pub struct QAOAPlus {
311 p: usize,
313 mixers: Vec<MixerOperator>,
315 initial_state: InitialStatePrep,
317 constraints: ConstraintStrategy,
319 optimizer: ClassicalOptimizer,
321}
322
323#[derive(Debug, Clone)]
324pub enum MixerOperator {
325 StandardX,
327 XYMixer { coupling_strength: f64 },
329 GroverMixer { marked_states: Vec<Vec<bool>> },
331 Custom { operator: PauliOperator },
333}
334
335#[derive(Debug, Clone)]
336pub enum InitialStatePrep {
337 EqualSuperposition,
339 WarmStart { solution: Vec<bool> },
341 DickeState { hamming_weight: usize },
343 Custom { amplitudes: Vec<f64> },
345}
346
347#[derive(Debug, Clone)]
348pub enum ConstraintStrategy {
349 None,
351 Penalty { strength: f64 },
353 ConstrainedMixer,
355 QuantumZeno { measurement_rate: f64 },
357}
358
359impl QAOAPlus {
360 pub fn new(p: usize, optimizer: ClassicalOptimizer) -> Self {
362 Self {
363 p,
364 mixers: vec![MixerOperator::StandardX; p],
365 initial_state: InitialStatePrep::EqualSuperposition,
366 constraints: ConstraintStrategy::None,
367 optimizer,
368 }
369 }
370
371 pub fn with_mixers(mut self, mixers: Vec<MixerOperator>) -> Self {
373 self.mixers = mixers;
374 self
375 }
376
377 pub fn with_initial_state(mut self, state: InitialStatePrep) -> Self {
379 self.initial_state = state;
380 self
381 }
382
383 pub const fn with_constraints(mut self, constraints: ConstraintStrategy) -> Self {
385 self.constraints = constraints;
386 self
387 }
388
389 fn apply_mixer(&self, layer: usize, _beta: f64) -> Result<(), String> {
391 match &self.mixers[layer % self.mixers.len()] {
392 MixerOperator::StandardX => {
393 Ok(())
395 }
396 MixerOperator::XYMixer {
397 coupling_strength: _,
398 } => {
399 Ok(())
401 }
402 MixerOperator::GroverMixer { marked_states: _ } => {
403 Ok(())
405 }
406 MixerOperator::Custom { operator: _ } => {
407 Ok(())
409 }
410 }
411 }
412}
413
414pub struct RecursiveQAOA {
416 base_depth: usize,
418 recursion_depth: usize,
420 decomposition: DecompositionStrategy,
422 aggregation: AggregationMethod,
424}
425
426#[derive(Debug, Clone)]
427pub enum DecompositionStrategy {
428 GraphPartitioning { num_partitions: usize },
430 VariableClustering { cluster_size: usize },
432 SpectralDecomposition { num_components: usize },
434 CommunityDetection { resolution: f64 },
436}
437
438#[derive(Debug, Clone)]
439pub enum AggregationMethod {
440 SimpleMerge,
442 WeightedCombination { weights: Vec<f64> },
444 ConsensusVoting,
446 BayesianAggregation,
448}
449
450impl RecursiveQAOA {
451 pub const fn new(
453 base_depth: usize,
454 recursion_depth: usize,
455 decomposition: DecompositionStrategy,
456 ) -> Self {
457 Self {
458 base_depth,
459 recursion_depth,
460 decomposition,
461 aggregation: AggregationMethod::SimpleMerge,
462 }
463 }
464
465 pub fn with_aggregation(mut self, method: AggregationMethod) -> Self {
467 self.aggregation = method;
468 self
469 }
470
471 pub fn solve_recursive(
473 &self,
474 problem: &Hamiltonian,
475 level: usize,
476 ) -> Result<RecursiveSolution, String> {
477 if level >= self.recursion_depth {
478 return self.solve_base_case(problem);
480 }
481
482 let subproblems = self.decompose_problem(problem)?;
484
485 let mut subsolutions = Vec::new();
487 for subproblem in subproblems {
488 let solution = self.solve_recursive(&subproblem, level + 1)?;
489 subsolutions.push(solution);
490 }
491
492 self.aggregate_solutions(subsolutions, problem)
494 }
495
496 fn decompose_problem(&self, problem: &Hamiltonian) -> Result<Vec<Hamiltonian>, String> {
498 match &self.decomposition {
499 DecompositionStrategy::GraphPartitioning { num_partitions } => {
500 Ok(vec![problem.clone(); *num_partitions]) }
503 DecompositionStrategy::VariableClustering { cluster_size: _ } => {
504 Ok(vec![problem.clone(); 2]) }
507 _ => Ok(vec![problem.clone()]),
508 }
509 }
510
511 fn solve_base_case(&self, _problem: &Hamiltonian) -> Result<RecursiveSolution, String> {
513 Ok(RecursiveSolution {
515 energy: 0.0,
516 state: vec![false; 10], metadata: HashMap::new(),
518 })
519 }
520
521 fn aggregate_solutions(
523 &self,
524 subsolutions: Vec<RecursiveSolution>,
525 _original_problem: &Hamiltonian,
526 ) -> Result<RecursiveSolution, String> {
527 match &self.aggregation {
528 AggregationMethod::SimpleMerge => {
529 let mut merged_state = Vec::new();
531 for sol in &subsolutions {
532 merged_state.extend(&sol.state);
533 }
534
535 Ok(RecursiveSolution {
536 energy: subsolutions.iter().map(|s| s.energy).sum(),
537 state: merged_state,
538 metadata: HashMap::new(),
539 })
540 }
541 _ => {
542 subsolutions
544 .into_iter()
545 .next()
546 .ok_or_else(|| "No subsolutions available for aggregation".to_string())
547 }
548 }
549 }
550}
551
552#[derive(Debug, Clone)]
553pub struct RecursiveSolution {
554 pub energy: f64,
555 pub state: Vec<bool>,
556 pub metadata: HashMap<String, f64>,
557}
558
559pub struct MultiAngleQAOA {
561 p: usize,
563 parameterization: AngleParameterization,
565 gate_decomposition: GateDecomposition,
567 symmetries: Vec<SymmetryType>,
569}
570
571#[derive(Debug, Clone)]
572pub enum AngleParameterization {
573 FullyParameterized,
575 LinearInterpolation { num_params: usize },
577 FourierSeries { num_frequencies: usize },
579 Polynomial { degree: usize },
581}
582
583#[derive(Debug, Clone)]
584pub enum GateDecomposition {
585 Standard,
587 ConnectivityAware { topology: String },
589 Approximate { fidelity: f64 },
591}
592
593#[derive(Debug, Clone)]
594pub enum SymmetryType {
595 Permutation { group: Vec<Vec<usize>> },
597 TimeReversal,
599 Parity,
601 Custom { name: String },
603}
604
605impl MultiAngleQAOA {
606 pub const fn new(p: usize) -> Self {
608 Self {
609 p,
610 parameterization: AngleParameterization::FullyParameterized,
611 gate_decomposition: GateDecomposition::Standard,
612 symmetries: Vec::new(),
613 }
614 }
615
616 pub const fn with_parameterization(mut self, param: AngleParameterization) -> Self {
618 self.parameterization = param;
619 self
620 }
621
622 pub fn with_symmetry(mut self, symmetry: SymmetryType) -> Self {
624 self.symmetries.push(symmetry);
625 self
626 }
627
628 fn generate_angles(&self, base_params: &[f64]) -> Vec<Vec<f64>> {
630 match &self.parameterization {
631 AngleParameterization::FullyParameterized => {
632 vec![base_params.to_vec(); self.p]
634 }
635 AngleParameterization::LinearInterpolation { num_params } => {
636 self.linear_interpolation(base_params, *num_params)
638 }
639 AngleParameterization::FourierSeries { num_frequencies } => {
640 self.fourier_series(base_params, *num_frequencies)
642 }
643 AngleParameterization::Polynomial { degree } => {
644 self.polynomial_angles(base_params, *degree)
646 }
647 }
648 }
649
650 fn linear_interpolation(&self, control_points: &[f64], num_qubits: usize) -> Vec<Vec<f64>> {
652 let mut angles = vec![vec![0.0; num_qubits]; self.p];
653
654 for layer in 0..self.p {
655 for qubit in 0..num_qubits {
656 let t = qubit as f64 / (num_qubits - 1) as f64;
658 let idx = (t * (control_points.len() - 1) as f64) as usize;
659 let frac = t * (control_points.len() - 1) as f64 - idx as f64;
660
661 if idx + 1 < control_points.len() {
662 angles[layer][qubit] =
663 control_points[idx].mul_add(1.0 - frac, control_points[idx + 1] * frac);
664 } else {
665 angles[layer][qubit] = control_points[idx];
666 }
667 }
668 }
669
670 angles
671 }
672
673 fn fourier_series(&self, coeffs: &[f64], num_qubits: usize) -> Vec<Vec<f64>> {
675 let mut angles = vec![vec![0.0; num_qubits]; self.p];
676
677 for layer in 0..self.p {
678 for qubit in 0..num_qubits {
679 let x = 2.0 * PI * qubit as f64 / num_qubits as f64;
680
681 for (k, &coeff) in coeffs.iter().enumerate() {
682 angles[layer][qubit] += coeff * (k as f64 * x).cos();
683 }
684 }
685 }
686
687 angles
688 }
689
690 fn polynomial_angles(&self, coeffs: &[f64], degree: usize) -> Vec<Vec<f64>> {
692 let mut angles = vec![vec![0.0; 10]; self.p]; for layer in 0..self.p {
695 for (i, angle) in angles[layer].iter_mut().enumerate() {
696 let x = i as f64 / 10.0; for (power, &coeff) in coeffs.iter().enumerate().take(degree + 1) {
699 *angle += coeff * x.powi(power as i32);
700 }
701 }
702 }
703
704 angles
705 }
706}
707
708#[cfg(test)]
709mod tests {
710 use super::*;
711
712 #[test]
713 fn test_adapt_qaoa() {
714 let optimizer = ClassicalOptimizer::GradientDescent {
715 learning_rate: 0.1,
716 momentum: 0.9,
717 };
718
719 let adapt = AdaptQAOA::new(10, optimizer).with_gradient_threshold(1e-4);
720
721 assert_eq!(adapt.max_depth, 10);
722 }
723
724 #[test]
725 fn test_qaoa_plus() {
726 let optimizer = ClassicalOptimizer::SPSA {
727 a: 0.1,
728 c: 0.1,
729 alpha: 0.602,
730 gamma: 0.101,
731 };
732
733 let qaoa_plus = QAOAPlus::new(3, optimizer).with_mixers(vec![
734 MixerOperator::StandardX,
735 MixerOperator::XYMixer {
736 coupling_strength: 0.5,
737 },
738 MixerOperator::StandardX,
739 ]);
740
741 assert_eq!(qaoa_plus.p, 3);
742 assert_eq!(qaoa_plus.mixers.len(), 3);
743 }
744
745 #[test]
746 fn test_recursive_qaoa() {
747 let recursive = RecursiveQAOA::new(
748 2,
749 3,
750 DecompositionStrategy::GraphPartitioning { num_partitions: 4 },
751 );
752
753 assert_eq!(recursive.recursion_depth, 3);
754 }
755
756 #[test]
757 fn test_multi_angle_qaoa() {
758 let multi = MultiAngleQAOA::new(5)
759 .with_parameterization(AngleParameterization::FourierSeries { num_frequencies: 3 });
760
761 let mut coeffs = vec![1.0, 0.5, 0.25];
762 let angles = multi.fourier_series(&coeffs, 10);
763
764 assert_eq!(angles.len(), 5); assert_eq!(angles[0].len(), 10); }
767}